f(x)=2cos²x+3sinx+3,x∈[π/6,2π/3]的值域
3个回答
展开全部
f(x)=2cos²x+3sinx+3
=2(1-(sinx)^2) + 3sinx+3
= -2(sinx)^2+3sinx+5
= -2( sinx - 3/4)^2+ 49/8
x∈[π/6,2π/3]
sinx∈[1/2, 1]
max f(x) = 49/8
f(π/6) = -1/8+49/8 = 6
f(2π/3) = 2(3/4) + 3√3/2 +3 = (1/2)(3√3 + 9)
值域= [(1/2)(3√3 + 9), 49/8]
=2(1-(sinx)^2) + 3sinx+3
= -2(sinx)^2+3sinx+5
= -2( sinx - 3/4)^2+ 49/8
x∈[π/6,2π/3]
sinx∈[1/2, 1]
max f(x) = 49/8
f(π/6) = -1/8+49/8 = 6
f(2π/3) = 2(3/4) + 3√3/2 +3 = (1/2)(3√3 + 9)
值域= [(1/2)(3√3 + 9), 49/8]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=2(1-sin²x) + 3sinx+3
=-2sin²x+3sinx+5
=-2(sinx-3/4)²+49/8
∵x∈[π/6,2π/3]
∴f(x)∈【49/8,6】
=-2sin²x+3sinx+5
=-2(sinx-3/4)²+49/8
∵x∈[π/6,2π/3]
∴f(x)∈【49/8,6】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询