3个回答
展开全部
f(x)=√3sin2x-cos2x
=2sin(2x-π/6)
最小正周期T=2π/2=π
递增区间:
-π/2+2kπ<2x-π/6<π/2+2kπ
-π/3+2kπ<2x<2π/3+2kπ
-π/6+kπ<x<π/3+kπ
所以,递增区间为(-π/6+kπ,π/3+kπ)k∈Z
递减区间:
π/2+2kπ<2x-π/6<3π/2+2kπ
2π/3+2kπ<2x<5π/3+2kπ
π/3+kπ<x<5π/6+kπ
所以,递增区间为(π/3+kπ,5π/6+kπ)k∈Z
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
=2sin(2x-π/6)
最小正周期T=2π/2=π
递增区间:
-π/2+2kπ<2x-π/6<π/2+2kπ
-π/3+2kπ<2x<2π/3+2kπ
-π/6+kπ<x<π/3+kπ
所以,递增区间为(-π/6+kπ,π/3+kπ)k∈Z
递减区间:
π/2+2kπ<2x-π/6<3π/2+2kπ
2π/3+2kπ<2x<5π/3+2kπ
π/3+kπ<x<5π/6+kπ
所以,递增区间为(π/3+kπ,5π/6+kπ)k∈Z
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=2根号3sinxcosx+2sin^2x-1=√3sin2x-cos2x=(1/2)sin(2x-π/6)
1)T=2π/2=π
2) 2kπ-π/2≤2x-π/6≤2kπ+π/2 =>kπ-π/6≤x≤kπ+5π/12
=>单调区间增区间为:[kπ-π/6,kπ+5π/12]
同理:单调区间减区间为:[kπ+5π/12,kπ+5π/6]
1)T=2π/2=π
2) 2kπ-π/2≤2x-π/6≤2kπ+π/2 =>kπ-π/6≤x≤kπ+5π/12
=>单调区间增区间为:[kπ-π/6,kπ+5π/12]
同理:单调区间减区间为:[kπ+5π/12,kπ+5π/6]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询