2个回答
展开全部
说明:假设AB上两点C,D如此排列。
A——D——C——B
已知 AC=(3/2)DB
AD+DC=(3/2)(DC+CB)
已知AD=35,BC=44
所以 35+DC=(3/2)(DC+44)
DC/2=-31
DC=-62<0
不符合实际,证明假设不成立。
加之下面热心知友的情况讨论,A——C——D——B,仍有矛盾,也应排除。
最终证明CD两点中至少有一点应该在AB的延长线上。
当然,如果认为AC=3/(2DB)
那么情况不详,暂不作讨论。
到这里吧!请批评指正。
A——D——C——B
已知 AC=(3/2)DB
AD+DC=(3/2)(DC+CB)
已知AD=35,BC=44
所以 35+DC=(3/2)(DC+44)
DC/2=-31
DC=-62<0
不符合实际,证明假设不成立。
加之下面热心知友的情况讨论,A——C——D——B,仍有矛盾,也应排除。
最终证明CD两点中至少有一点应该在AB的延长线上。
当然,如果认为AC=3/(2DB)
那么情况不详,暂不作讨论。
到这里吧!请批评指正。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询