计算(2+1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)!
1个回答
展开全部
(2+1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
=(2-1)[(2+1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)]
=[(2-1)(2+1)](2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
=(2^2-1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
=[(2^2-1)(2^2+1)](2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
=(2^4-1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
...
=(2^2n -1)(2^2n+1)
=2^(2n+2)-1
=(2-1)[(2+1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)]
=[(2-1)(2+1)](2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
=(2^2-1)(2^2+1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
=[(2^2-1)(2^2+1)](2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
=(2^4-1)(2^4+1)(2^6+1)(2^8+1)……(2^2n+1)
...
=(2^2n -1)(2^2n+1)
=2^(2n+2)-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询