设A*是n阶方阵A的伴随矩阵,若R(A*)=n,则R(A)=?

百度网友0117f73
推荐于2016-12-02 · TA获得超过4.7万个赞
知道大有可为答主
回答量:8088
采纳率:94%
帮助的人:4762万
展开全部
解:
A*是n阶方阵A的伴随矩阵,若R(A*)=n,则R(A)=n
因为A^(-1)=A*/|A|
两边同时乘以A得
E=AA*/|A|
所以A可逆
R(A)=n

记住结论:
A*是n阶方阵A的伴随矩阵,
①若R(A)=n,则R(A*)=n
②若R(A)=n-1,则R(A*)=1
③若R(A)≤n-2,则R(A*)=0
lry31383
高粉答主

2013-01-17 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部

A与A*的秩的关系:

所以 r(A*)=n 时, r(A)=n.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式