已知向量m=(sinB,1-cosB),且与向量n=(2,0)所成角为60度,其中A,B,C为三角形内角
1个回答
展开全部
m*n=2sinB
|m|²=sin²B+(1-cosB)²=2-2cosB=2(1-cosB)=4sin²(B/2)
|m|=2sin(B/2)
|n|=2
cos60
=m*n/(|m|*|n|)
=2sinB/4sin(B/2)
=4sin(B/2)cos(B/2)/4sin(B/2)
=cos(B/2)=1/2
B/2=60,B=120度
sinA+sinC
=(1/2)sin(A+C/2)cos(A-C/2)
=(1/2)*sin(60/2)cos(A-C/2)
=cos(A-C/2)
取值范围是:(根号3)/2<sinA+sinC<=1
|m|²=sin²B+(1-cosB)²=2-2cosB=2(1-cosB)=4sin²(B/2)
|m|=2sin(B/2)
|n|=2
cos60
=m*n/(|m|*|n|)
=2sinB/4sin(B/2)
=4sin(B/2)cos(B/2)/4sin(B/2)
=cos(B/2)=1/2
B/2=60,B=120度
sinA+sinC
=(1/2)sin(A+C/2)cos(A-C/2)
=(1/2)*sin(60/2)cos(A-C/2)
=cos(A-C/2)
取值范围是:(根号3)/2<sinA+sinC<=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询