用数学归纳法证明1/n+1/(n+1)+1/(n+2)+……1/n²>1(n∈N*,n>1)
n=k时有1/k+1/(k+1)+……+1/k²>1
k≥2
令a=1/k+1/(k+1)+……+1/k²>1
则n=k+1
1/(k+1)+1/(k+2)+……+1/(k+1)²
=a-1/k+1/(k²+1)+……+1/(k+1)²
因为1/(k²+1)>1/(k+1)²
1/(k²+2)>1/(k+1)²
……
所以a-1/k+1/(k²+1)+……+1/(k+1)²>a-1/k+1/(k+1)²+……+1/(k+1)²
=a-1/k+(2k+1)*1/(k+1)²
=a+(2k²+k-k²-2k-1)/k(k+1)²
=a+[(k-1/2)²-5/4]k(k+1)²
k≥2
所以a+[(k-1/2)²-5/4]k(k+1)²>a>1
所以n=k+1
1/(k+1)+1/(k+2)+……+1/(k+1)²>1
综上,……
n=2
1/2+1/3+1/4=(6+4+3)/12=13/12>1
成立
设n=k时,关系成立
1/k+1/(k+1)+...+1/k²>1
n=k+1时
左边=1/(k+1)+1/(k+2)+...+1/k²+1/(k²+1)+...+1/(k+1)²
=1/k+1/(k+1)+1/(k+2)+...+1/k²+1/(k²+1)+...+1/(k+1)²-1/k
>1+1/(k²+1)+...+1/(k+1)²-1/k
要证明:
1/(k²+1)+...+1/(k+1)²-1/k≥0
(k+1)²-k²=2k+1项,
1/(k²+1)+...+1/(k+1)²>(2k+1)[1/(k²+1)(k²+2)...(k+1)²]^(2k+1)
>(2k+1)/(k+1)²
1/(k²+1)+...+1/(k+1)²-1/k>(2k+1)/(k+1)²-1/k
=[k(2k+1)-(k+1)²]/k(k+1)²
=(2k²+k-k²-2k-1)/k(k+1)²
=(k²-k-1)/k(k+1)²
=[(k-1/2)²-5/4]/k(k+1)²
k≥2,
k-1/2≥2-1/2=3/2
(k-1)²≥6/4
(k-1)²-5/4≥6/4-5/4=1/4>0
∴1/(k²+1)+...+1/(k+1)²-1/k≥0成立。
得证.
n=2时,1/2 +1/3 +1/4=13/12>1,不等式成立。
假设当n=k(k∈N*)时,不等式成立,即1/k +1/(k+1)+...+1/k²>1
则当n=k+1时
1/(k+1)+1/(k+2)+...+1/k²+1/(k²+1)+1/(k²+2)+...+1/(k²+2k+1)
=[1/(k²+1)+1/(k²+2)+...+1/(k²+2k+1) -1/k] +[1/k +1/(k+1)+...+1/k²]
>[1/(k²+1)+1/(k²+2)+...+1/(k²+2k+1) -1/k] +1
1/(k²+1)+1/(k²+2)+...+1/(k²+2k+1) -1/k
>1/(k+1)²+ 1/(k+1)²+...+1/(k+1)² -1/k
=(2k+1)/(k+1)² -1/k
=[k(2k+1)-(k+1)²]/[k(k+1)²]
=(k²-k-1)/[k(k+1)²]
=(k²-k-2+1)/[k(k+1)²]
=[(k+1)(k-2)+1]/[k(k+1)²]
k≥2,(k+1)(k-2)≥0,1>0,(k+1)²>0
[(k+1)(k-2)+1]/[k(k+1)²]>0
1/(k²+1)+1/(k²+2)+...+1/(k²+2k+1) -1/k
>1/(k+1)²+ 1/(k+1)²+...+1/(k+1)² -1/k
>0
1/(k+1)+1/(k+2)+...+1/k²+1/(k²+1)+1/(k²+2)+...+1/(k²+2k+1)
>[1/(k²+1)+1/(k²+2)+...+1/(k²+2k+1) -1/k] +1
>1
不等式同样成立。
k为任意正整数,因此对于任意正整数n,不等式恒成立。
即:1/n +1/(n+1)+ 1/(n+2)+...+1/n²>1
解题思路:
1、运用数学归纳法,先解得n=2时不等式成立;再设n=k,进而证明n=k+1时不等式成立。
2、在证明过程中,用到了放缩法。