线性代数问题 急!!

1.设p1是n*n型方程组Ax=0的一个非零解向量,若存在一组向量p1,p2,……,ps满足Api=pi-1(i-1是下标)(i=2,……,s),证明向量组p1,p2,…... 1.设p1是n*n型方程组Ax=0的一个非零解向量,若存在一组向量p1,p2,……,ps满足Api=pi-1(i-1是下标)(i=2,……,s),证明向量组p1,p2,……,ps线性无关。
2.设α,β为三元正交单位向量,A=αβT+βαT。(1)α+β,α-β是A的特征向量。(2)det(A)=0
谢谢老师。问题比较着急,再次感谢!!
展开
 我来答
lry31383
高粉答主

2013-01-17 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
1. 由 Ap1=0,Api=pi-1 得 A^kpk=0, A^k-1pk=p1 (k=1,2,...,s)
设 k1p1+k2p2+...+ksps=0 (1)
等式两边左乘 A^s-1, 得 ksp1=0
因为 p1≠0, 所以 ks=0
(1)式变为 k1p1+k2p2+...+ks-1ps-1=0 (2)
同理, 等式两边左乘 A^s-2, 得 ks-1=0
依次可得 ks=ks-1=...=k1=0
所以 p1,p2,...,ps线性无关.
2. 因为 α,β是正交的单位向量
所以 A(α+β)=(αβ^T+βα^T)(α+β)=αβ^Tα+βα^Tα+αβ^Tβ+βα^Tβ=0+β+α+0=α+β
所以α+β是A的属于特征值1的特征向量
同理 A(α-β)=(αβ^T+βα^T)(α-β)=αβ^Tα+βα^Tα-αβ^Tβ-βα^Tβ=0+β-α+0=-(α-β)
所以α-β是A的属于特征值-1的特征向量.
又因为 r(A)=r(αβ^T+βα^T)<=r(αβ^T)+r(βα^T)<=r(α)+r(β)=2
所以 |A|=0.
PS. 提问技巧: 分开提问. 放在一起大家就不想答了.
来自:求助得到的回答
汴梁布衣
2013-01-18 · TA获得超过3291个赞
知道大有可为答主
回答量:1921
采纳率:87%
帮助的人:806万
展开全部
设∑KiPi=0,A^(s-1)[∑KiPi]=KsP1=0,Ks=0
类似地:K1=K2=....=Ks=0
∴向量组p1,p2,……,ps线性无关。
A(α)=αβTα+βαTα=β
A(β)=αβTβ+βαTβ=α
A(α+β)=α+β
A(α-β)=-α+β=-(α-β)
∴α+β,α-β是A的特征向量。
R(αβT)=1;
R(βαT)=1
R(A)≤2<3
∴det(A)=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
电灯剑客
科技发烧友

2013-01-17 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4740万
展开全部
1. c1p1+c2p2+...+csps=0
对上式反复作用A依次证明cs=0, c(s-1)=0, ..., c1=0即可

2. (1) 乘法自己算,只要额外验证α+β不是零向量即可,利用一下α^T(α+β)非零
(2)显然rank(A)<=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式