请教高手,高数积分∫1/(1+cos²x)dx
2个回答
2013-01-18
展开全部
∫1/(1+cos²x)dx
=∫(sec²x)/(2+tan²x)dx
=∫(dtanx)/(2+tan²x)
=(√2/2)arctan[(√2/2)tanx]+C。
(tanx)'=sec²x,[(1/t)arctan(x/t)]'=1/(x²+t²)
=∫(sec²x)/(2+tan²x)dx
=∫(dtanx)/(2+tan²x)
=(√2/2)arctan[(√2/2)tanx]+C。
(tanx)'=sec²x,[(1/t)arctan(x/t)]'=1/(x²+t²)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询