∫ (x² + 1)/(x⁴ + 1) dx、分子分母各除以x²
= ∫ (1 + 1/x²)/(x² + 1/x²) dx
= ∫ d(x - 1/x)/[(x - 1/x)² + 2]、注意微分d(x - 1/x) = x² + 1/x²、分母凑完全平方形式
= ∫ du/(u² + 2)、就如这个形式,u = x - 1/x
= (1/√2)arctan(u/√2) + C、公式∫ dx/(a² + x²) = (1/a)arctan(x/a)
= (1/√2)arctan[(x - 1/x)/√2] + C
= (1/√2)arctan[x/√2 - 1/(√2*x)] + C
手写版: