求第3题的极限和做法。。急!!! 30
2个回答
展开全部
解:∵(1-x^(1/3))(1+x^(1/3)+x^(2/3))=1-x
(1-x^(1/4))(1+x^(1/4))=1-x^(1/2)
(1-x^(1/2))(1+x^(1/2))=1-x
∴1-x^(1/4)=(1-x^(1/2))/(1+x^(1/4)).........(1)
1-x^(1/3)=(1-x)/(1+x^(1/3)+x^(2/3))..........(2)
1-x^(1/2)=(1-x)/(1+x^(1/2)).........(3)
故 原式=lim(x->1){(1-x^(1/2))[(1-x)/(1+x^(1/3)+x^(2/3))][(1-x^(1/2))/(1+x^(1/4))]/(1-x)³}
(由(1)和(2)代入)
=lim(x->1){(1-x)(1-x^(1/2))²/[(1-x)³(1+x^(1/3)+x^(2/3))(1+x^(1/4))]}
=lim(x->1){(1-x^(1/2))²/[(1-x)²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]} (分子分母同除1-x)
=lim(x->1){[(1-x)/(1+x^(1/2))]²/[(1-x)²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]} (由(3)代入)
=lim(x->1){(1-x)²/[(1-x)²(1+x^(1/2))²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]}
=lim(x->1){1/[(1+x^(1/2))²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]} (分子分母同除(1-x)²)
=1/[(1+1^(1/2))²(1+1^(1/3)+1^(2/3))(1+1^(1/4))]
=1/(2²*3*2)
=1/24。
(1-x^(1/4))(1+x^(1/4))=1-x^(1/2)
(1-x^(1/2))(1+x^(1/2))=1-x
∴1-x^(1/4)=(1-x^(1/2))/(1+x^(1/4)).........(1)
1-x^(1/3)=(1-x)/(1+x^(1/3)+x^(2/3))..........(2)
1-x^(1/2)=(1-x)/(1+x^(1/2)).........(3)
故 原式=lim(x->1){(1-x^(1/2))[(1-x)/(1+x^(1/3)+x^(2/3))][(1-x^(1/2))/(1+x^(1/4))]/(1-x)³}
(由(1)和(2)代入)
=lim(x->1){(1-x)(1-x^(1/2))²/[(1-x)³(1+x^(1/3)+x^(2/3))(1+x^(1/4))]}
=lim(x->1){(1-x^(1/2))²/[(1-x)²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]} (分子分母同除1-x)
=lim(x->1){[(1-x)/(1+x^(1/2))]²/[(1-x)²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]} (由(3)代入)
=lim(x->1){(1-x)²/[(1-x)²(1+x^(1/2))²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]}
=lim(x->1){1/[(1+x^(1/2))²(1+x^(1/3)+x^(2/3))(1+x^(1/4))]} (分子分母同除(1-x)²)
=1/[(1+1^(1/2))²(1+1^(1/3)+1^(2/3))(1+1^(1/4))]
=1/(2²*3*2)
=1/24。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询