求证左边等于右边。

lic_ling0
2013-01-19 · TA获得超过5022个赞
知道大有可为答主
回答量:2950
采纳率:0%
帮助的人:759万
展开全部
证明:左边=(1-cosa^2)/(sina-cosa)-(sina+cosa)/(tana^2-1)
=sina^2/(sina-cosa)-cosa^2(sina+cosa)/(sina^2-cosa^2)
=sina^2/(sina-cosa)-cosa^2(sina+cosa)/(sina+cosa)(sina-cosa)
=sina^2/(sina-cosa)-cosa^2/(sina-cosa)
=(sina^2-cosa^2)/(sina-cosa)
=(sina+cosa)(sina-cosa)/(sina-cosa)
=sina+cosa
=右边
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
HLycoris
2013-01-19 · TA获得超过6955个赞
知道大有可为答主
回答量:1974
采纳率:50%
帮助的人:1100万
展开全部
左边=(1-cos^2α)/(sinα-cosα)-(sinα+cosα)/(tan^2α-1)
=sin^2α/(sinα-cosα)-cos^2α *(sinα+cosα)/(sin^2α-cos^2α)
=sin^2α/(sinα-cosα)-cos^2α/(sinα-cosα)
=(sin^2α-cos^2α)/(sinα-cosα)
=sinα+cosα=右边
其中sin^2α-cos^2α=(sinα+cosα)*(sinα-cosα)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
feidao2010
2013-01-19 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
证明:
左边
=(1-cos²a)/(sina-cosa)-(sina+cosa)/(tan²a-1)
=(1-cos²a)*(sina+cosa)/(sin²a-cos²a)-(sina+cosa)cos²a/(sin²a-cos²a)
=[(1-cos²a)*(sina+cosa)-(sina+cosa)cos²a]/(sin²a-cos²a)
=(sina+cosa)(1-2cos²a)/(sin²a-cos²a)
=(sina+cosa)(sin²a+cos²a-2cos²a)/(sin²a-cos²a)
=(sina+cosa)(sin²a-cos²a)/(sin²a-cos²a)
=sina+cosa
=右边
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式