如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外)

过点P作PD∥AC,交BC于点D,连接CP.(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积最大时,求点P的坐... 过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.
展开
唐卫公
2013-01-20 · TA获得超过3.7万个赞
知道大有可为答主
回答量:9440
采纳率:76%
帮助的人:4606万
展开全部
(1) y = a(x - 4)(x + 2)
x = 0, y = -8a = -4, a = 1/2
y = (x - 4)(x + 2)/2 = x²/2 - x - 4

(2)C(0, -4)
BC = 2√5
P(p, 0), p > -2
BP² = (p + 2)²
AC和PD的斜率均为1, PD的方程: y = x - p
BC的方程: x/(-2) + y/(-4) = 1
联立, D((p-4)/3, (2p + 4)/3)
BD² = [(p - 4)/3 + 2]² + [(2p + 4)/3]² = 5(p+2)²/9
BD = (√5)(p+2)/3
BP² = BD•BC
(p + 2)² = 2√5* (√5)(p+2)/3
p = 4/3
P(4/3, 0)

(3)PD² = [(p - 4)/3 -p]² + [(2p + 4)/3]² = 8(p+2)²/9
PD = 2(√2)(p+2)/3
AC = 4√2
PD的方程: y = x - p, x - y - p = 0
A与PD的距离h = |4 - 0 - p|/√2 = (4 - p)/√2
△PCD的面积S = 梯形ACDP的面积 - △APC的面积
= (1/2)(PD + AC)*h - (1/2)AP*|C的纵坐标|
= (1/2)[2(√2)(p+2)/3 + 4√2]*(4 - p)/√2 - (1/2)(4 - p)*4
= -p²/3 + 2p/3 + 8/3
= -(p - 1)²/3 + 3
p = 1时, S最大
P(1, 0)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式