
请教几道初三数学题
1)一圆切于不规则四边形ABCD,且AB=16,CD=10(AB不平行于CD),则四边形的周长为2)在△ABC中,∠C=90°,AC=3√3,AB=6,O是AB上一点,过...
1)一圆切于不规则四边形ABCD,且AB=16,CD=10(AB不平行于CD),则四边形的周长为
2)在△ABC中,∠C=90°,AC=3√3 ,AB=6,O是AB上一点,过点B作圆形O切AC与D,则圆形O面积是 展开
2)在△ABC中,∠C=90°,AC=3√3 ,AB=6,O是AB上一点,过点B作圆形O切AC与D,则圆形O面积是 展开
3个回答
展开全部
1:
利用圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,即可得.
解答:解:根据圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,
∴AB+BC+CD+AD=52
故填:52
2:
BC=3,做CD⊥AB,所以r=CD=3/2*根号3=3/2*√3 ,所以s=πr²=27/4π
数学团队【逻辑美】很高兴为您解答,祝您学习进步!
利用圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,即可得.
解答:解:根据圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,
∴AB+BC+CD+AD=52
故填:52
2:
BC=3,做CD⊥AB,所以r=CD=3/2*根号3=3/2*√3 ,所以s=πr²=27/4π
数学团队【逻辑美】很高兴为您解答,祝您学习进步!
展开全部
1)一圆切于不规则四边形ABCD,且AB=16,CD=10(AB不平行于CD),则四边形的周长为
2)在△ABC中,∠C=90°,AC=3√3 ,AB=6,O是AB上一点,过点B作圆形O切AC与D,则圆形O面积是
2)在△ABC中,∠C=90°,AC=3√3 ,AB=6,O是AB上一点,过点B作圆形O切AC与D,则圆形O面积是
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长52
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询