已知sin(a+135°)=5/13,cos(45°-β ),且-45°<a<45°,45°<β <135°,求cos2(a-β)的值
1个回答
展开全部
cos2(a-β)=2cos^2(a-β)-1
-45°<a<45° ,90°<a+135°<180° sin(a+135°)=5/13
所以:cos(a+135°)=-√[1-sin^2(a+135°)]=-√(1-25/169)=-12/13
45°<β <135°, -45°>-β >-135°, -90°<45°-β<0° cos(45°-β )=3/5
所以:sin(45°-β)=-√[1-cos(45°-β)]=-√(1-9/25)=-4/5
cos(a-β)=-cos(a-β+180°)
=-cos[(a+135°)+(45°-β)]
=-cos(a+135°)cos(45°-β)+sin(a+135°)sin(45°-β)
=-(-12/13)*(3/5)+(5/13)*(-4/5)
=36/65-20/65
=16/65
所以:cos2(a-β)=2cos^2(a-β)-1=2*(16/65)^2-1
-45°<a<45° ,90°<a+135°<180° sin(a+135°)=5/13
所以:cos(a+135°)=-√[1-sin^2(a+135°)]=-√(1-25/169)=-12/13
45°<β <135°, -45°>-β >-135°, -90°<45°-β<0° cos(45°-β )=3/5
所以:sin(45°-β)=-√[1-cos(45°-β)]=-√(1-9/25)=-4/5
cos(a-β)=-cos(a-β+180°)
=-cos[(a+135°)+(45°-β)]
=-cos(a+135°)cos(45°-β)+sin(a+135°)sin(45°-β)
=-(-12/13)*(3/5)+(5/13)*(-4/5)
=36/65-20/65
=16/65
所以:cos2(a-β)=2cos^2(a-β)-1=2*(16/65)^2-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询