三角形abc是等边三角形 p是三角形外一点,且角ABP+角ACP=180度。求证PB+PC=PA。
三角形abc是等边三角形p是三角形外一点,且角ABP+角ACP=180度。求证PB+PC=PA。(我已画出辅助线,就按照这种方法证明这道题)谢谢...
三角形abc是等边三角形 p是三角形外一点,且角ABP+角ACP=180度。求证PB+PC=PA。
(我已画出辅助线,就按照这种方法证明这道题)谢谢 展开
(我已画出辅助线,就按照这种方法证明这道题)谢谢 展开
1个回答
展开全部
证明:在BP的延长线上取点D,使PC=PD,连接CD
∵等边△ABC
∴AC=BC,∠BAC=∠ACB=60
∵∠BAC+∠BPC+∠ABP+∠ACP=360, ∠ABP+∠ACP=180
∴∠APC=360-180-60=120
∴∠CPD=180-∠BPC=60
∵PC=PD
∴等边△PCD
∴PC=DC,∠PCD=60
∴∠ACB=∠PCD
∵∠ACP=∠ACB+∠BCP,∠BCD=∠PCD+∠BCP
∴∠ACP=∠BCD
∴△ACP≌△BCD (SAS)
∴BD=PA
∵PB+PD=BD
∴PB+PC=BD
∴PB+PC=PA
祝你学习进步,更上一层楼!不明白请及时追问,满意敬请采纳,O(∩_∩)O谢谢~~
记得及时评价啊,答题不易,希望我们的劳动能被认可,这也是我们继续前进的动力!
∵等边△ABC
∴AC=BC,∠BAC=∠ACB=60
∵∠BAC+∠BPC+∠ABP+∠ACP=360, ∠ABP+∠ACP=180
∴∠APC=360-180-60=120
∴∠CPD=180-∠BPC=60
∵PC=PD
∴等边△PCD
∴PC=DC,∠PCD=60
∴∠ACB=∠PCD
∵∠ACP=∠ACB+∠BCP,∠BCD=∠PCD+∠BCP
∴∠ACP=∠BCD
∴△ACP≌△BCD (SAS)
∴BD=PA
∵PB+PD=BD
∴PB+PC=BD
∴PB+PC=PA
祝你学习进步,更上一层楼!不明白请及时追问,满意敬请采纳,O(∩_∩)O谢谢~~
记得及时评价啊,答题不易,希望我们的劳动能被认可,这也是我们继续前进的动力!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询