高中数学 导数公式证明步骤

4.y=logaxΔy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/xΔy/Δx=loga[(1+Δx/x)^(x/Δx... 4.y=logax
Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x
Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x
因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有
limΔx→0Δy/Δx=logae/x。
也可以进一步用换底公式
limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1)
可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。
5.y=sinx
Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2)
Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2)
所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx

这是y=logax和y=sinx的证明步骤 我有些不明白,请问: loga(x+Δx)/x=loga[(1+Δx/x)^x]/x是怎么回事?
为什么e^nlnx·(nlnx)'=x^n·n/x?求详解 谢谢!
展开
kent0607
高粉答主

2014-02-20 · 关注我不会让你失望
知道大有可为答主
回答量:6.2万
采纳率:77%
帮助的人:6990万
展开全部
  4. 你的
"Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x"
有笔误,应该是:对函数
   y = log_a_x (= lnx/lna),

   Δy = log_a_(x+Δx)-log_a_x = log_a_(1+Δx/x) = ln(1+Δx/x)/lna,

   Δy/Δx = [ln(1+Δx/x)/lna]/Δx= (1/lna)*ln[(1+Δx/x)^(x/Δx)]/x = (1/xlna)*ln[(1+Δx/x)^(x/Δx)],
于是,
   lim(Δx→0)[Δy/Δx]
  = [1/(xlna)]*lim(Δx→0)ln[(1+Δx/x)^(x/Δx)]
  = [1/(xlna)]*lne = 1/(xlna)。
据此,对函数
   y = e^ln(x^n) = e^(nlnx)
利用复合函数求导法,可得
   y' = e^(nlnx)*(nlnx)' = (x^n)*(n/x) = nx^(n-1)。

  5. 对 y = sinx,利用三角函数的和差化积公式
   Δy = sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2),
   Δy/Δx = 2[cos(x+Δx/2)sin(Δx/2)]/Δx = cos(x+Δx/2)[sin(Δx/2)/(Δx/2)],
这样,
   lim(Δx→0)Δy/Δx = lim(Δx→0)cos(x+Δx/2)*lim(Δx→0)[sin(Δx/2)/(Δx/2)] = cosx*1 = cosx。
追问
你好呀 别的都明白 就是为什么lim(Δx→0)cos(x+Δx/2)*lim(Δx→0)[sin(Δx/2)/(Δx/2)] = cosx*1

求解答&详细过程 谢谢
追答
  因为
  lim(Δx→0)cos(x+Δx/2) = cosx,
  lim(Δx→0)[sin(Δx/2)/(Δx/2)] =1。
vjqd
2014-02-20
知道答主
回答量:34
采纳率:0%
帮助的人:26万
展开全部
loga(x+Δx)/x
=loga(1+Δx/x) 这是将分母上的x放在括号内
=[ xloga(1+Δx/x) ]/x 这是上式的分子分母同乘以x
=loga[(1+Δx/x)^x]/x 这是将对数式前的系数x 放到真数上作为真数的指数

e^nlnx·(nlnx)'
=(e^lnx)^n·(n/x) 前一部分用公式a^(xy)=(a^y)^x,后一部分是求导公式(lnx)'=1/x
=x^n·(n/x) 用的是公式a^(logax)=x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式