已知各项均为正数的等比数列{An}的前n项和为Sn,A1=3,S3=39
(1),求数列{An}的通项公式?(2)若在An与An-1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:1/d1+1/d2+.....+1/dn<5...
(1),求数列{An}的通项公式?
(2)若在An与An-1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:1/d1+1/d2+.....+1/dn<5/8
急 展开
(2)若在An与An-1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:1/d1+1/d2+.....+1/dn<5/8
急 展开
1个回答
展开全部
(1)
S3=a1+a2+a3 =a1(1+q+q^2) =39
1+q+q^2=13
q^2+q-12=0
q1=3 , q2=-4(与各项为正数矛盾,舍去)
an= a1 q^(n-1)=3* 3^(n-1)=3^n
(2)
an - a'n-1' = 3^n -3^(n-1) = 2*3^(n-1)
依题意 an - a'n-1' = (n+1)dn
所以 dn = [ 2*3^(n-1) ] /(n+1) , 1/dn = (n+1) / [ 2*3^(n-1) ]= (3/2) (n+1) / 3^n
可证明 11/d1 +1d2 +...+1/dn = (3/8) [ 5 - (5 + 2 n) / 3^n ] < 15 / 8
题目中的 5/8 是否写错了?
S3=a1+a2+a3 =a1(1+q+q^2) =39
1+q+q^2=13
q^2+q-12=0
q1=3 , q2=-4(与各项为正数矛盾,舍去)
an= a1 q^(n-1)=3* 3^(n-1)=3^n
(2)
an - a'n-1' = 3^n -3^(n-1) = 2*3^(n-1)
依题意 an - a'n-1' = (n+1)dn
所以 dn = [ 2*3^(n-1) ] /(n+1) , 1/dn = (n+1) / [ 2*3^(n-1) ]= (3/2) (n+1) / 3^n
可证明 11/d1 +1d2 +...+1/dn = (3/8) [ 5 - (5 + 2 n) / 3^n ] < 15 / 8
题目中的 5/8 是否写错了?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询