
2个回答
展开全部
积化和差:√3*sin20cos80 =(√3/2)(sin100-sin60)=(√3/2)sin80-3/4
逆用二倍角公式:
sin²(20)+cos²(80)= (cos80)² + (cos70)²
= (1/2)·[cos160 + 1 + cos140 + 1]
= 1 - (1/2)·(cos40 + cos20)
= 1 - (1/2)·2cos30cos10
= 1 - cos30cos10
= 1- (√3/2)sin80
∴原式 = 1/4
望采纳谢谢~~
逆用二倍角公式:
sin²(20)+cos²(80)= (cos80)² + (cos70)²
= (1/2)·[cos160 + 1 + cos140 + 1]
= 1 - (1/2)·(cos40 + cos20)
= 1 - (1/2)·2cos30cos10
= 1 - cos30cos10
= 1- (√3/2)sin80
∴原式 = 1/4
望采纳谢谢~~
追问
逆用二倍角公式公式怎么弄的
追答
积化和差公式的逆用啊,你是第几步没看懂
2014-03-02
展开全部
√3*sin20cos80 =(√3/2)(sin100-sin60)=(√3/2)sin80-3/4
sin²(20)+cos²(80)= (cos80)² + (cos70)² 【cos2a=2cos^a-1,cos^a=1/2(cos2a+1)】
= (1/2)·[cos160 + 1 + cos140 + 1]
= 1 - (1/2)·(cos40 + cos20)
= 1 - (1/2)·2cos30cos10
= 1 - cos30cos10
= 1- (√3/2)sin80
∴原式 = 1/4
sin²(20)+cos²(80)= (cos80)² + (cos70)² 【cos2a=2cos^a-1,cos^a=1/2(cos2a+1)】
= (1/2)·[cos160 + 1 + cos140 + 1]
= 1 - (1/2)·(cos40 + cos20)
= 1 - (1/2)·2cos30cos10
= 1 - cos30cos10
= 1- (√3/2)sin80
∴原式 = 1/4
追问
第二步怎么化的
追答
(1/2)·[cos160 + 1 + cos140 + 1]
= (1/2)[cos(180-20) + 1 + cos(180-40 )+ 1]
= 1 - (1/2)·(cos40 + cos20)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询