初二的勾股定理难吗? 能把重点和难点说一下? 还有请再出一些基本的题目给我做下。 谢谢了……

匿名用户
2013-12-11
展开全部
定义   在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方。 简介   勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。 目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。   勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。   直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。 勾股定理指出   直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。   也就是说设直角三角形两直角边为a和b,斜边为c,那么   a的平方+b的平方=c的平方 a^2+b^2=c^2 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。   我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。 勾股数组   满足勾股定理方程 a^2+b^2=c^2;的正整 勾股定理数组(a,b,c)。例如(3,4,5)就是一组勾股数组。 习题及答案  将直角三角形ABC绕直角顶点C旋转,使点A落在BC边上的A',利用阴影部分面积完成勾股定理的证明。∠ACB=90°,BC=a,AC=b,AB=c;求证:a^2+b^2=c^2.   答案   证明:作△A'B'C'≌△ABC使点A的对应点A'在BC上,连接AA' 、BB', 延长B'A'交AB于点M 。</B>   ∵△A'B'C是由△ABC旋转所得   ∴Rt△ABC≌Rt△A'B'C   ∴∠A'B'C=∠ABC   延长B'A'交AB于点M   则∠A'B'C+∠B'A'C=90°   而∠B'A'C=∠MA'B(对顶角相等)   ∴∠MBA'+MA'B=90°   ∴B'M⊥AB   ∴Rt△ABC∽Rt△A'BM   ∴A'B/AB=A'M/AC   即(a-b)/c=A'M/b   ∴A'M=(a-b)·b/c   ∴S△ABB'=(1/2)AB·B'M=(1/2)AB·[B'A'+A'M]   =(1/2)·c·[c+(a-b)·b/c]   =(1/2)c^2+(1/2)(a-b)·b   =(1/2)[c^2+ab-b^2]   S△B'A'B=(1/2)A'B·B'C=(1/2)(a-b)a=(1/2)(a^2-ab)   而S△ABB=2·S△ABC+S△B'A'B   ∴(1/2)[c^2+ab-b^2]=2·[(1/2)ab]+(1/2)(a^2-ab)   则c^2+ab-b^2=2ab+a^2-ab   ∴a^2+b^2=c^2.
匿名用户
2013-12-11
展开全部
很简单,难是难在全等相似和函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-11
展开全部
不难,就是直角边平方和等于斜边的平方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-11
展开全部
真的不难,只是作为一个工具。记住a^2=b^2+c^2就可以了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式