求高三冲刺 数学学习方法 高效
4个回答
2014-03-15
展开全部
1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念.如以“角”的概念为例,课本中出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各自的定义出法,都有一个确定的取值范围.如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的唯一性.对此理解、掌握了才不会出现概念性错误.
2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用平均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件.又如棣莫佛定理是对复数三角形式来说的.如数列中的前n 项和与无穷数列各项和S(S=)含义是不同的,等等.
3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.
如已知(1-2x)= a + a x+ a x +…+ a x ,那么①a + a + a +…+ a = ;②|a| +|a| +|a| +…+|a|= . 如(x +1)(x +1) (x +1) …(x +1) 的展开式所有项的系数之和为.
因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础.
二、上好课.同学们学习的主阵地是课堂,课堂的学习质量是影响学习成绩的关一环.
1.会听课.有的同学会说:“谁还不会听课?”其实不然.会听课就是要积极思考.当老师提出问题后,就要抢在老师前面思考怎么办?想一想解决这个问题的所有可能的途径和方法,然后在和教师讲的去比较,可能有的想法行有的不行,可能老师的方法更好,可能你的方法还简明、还奇妙.而不要等老师一点一点告诉你,自己仅仅是听懂了就认为学会了,这实际上是只得怀疑的.难怪不少同学说老师一讲就会,自己一做就错,原因是自己没有真正去思考,也就不可能变成自己的东西.所以积极思考是上好课最为重要的环节,当然也学习的主要方法.
2.做笔记.上课老师讲的含有重要概念,各种问题常规思想与方法,易错的问题,以及一些很适用的规律和技能等,所以,上课做好笔记是必要的.
3.要及时复习.根据记忆规律,复习应及时,每天一复习,一周一复习,每单一总结为好.
三.多做题.学数学离不开做题,高三学习更要做题,不做一定量习题是不可能学好数学的,但是要注意以下几个问题:
1.难度适当.现在复习资料多,题多,复习时应按老师的要求.且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失.因此,练习时应从自已的实际情况出发,循序渐进.应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质
2.题贵在精.在可能的情况下多练习一些是好的,但贵在精.首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”.其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程.第三对重点问题要舍得划费时间,多做一些题.第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一.
2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用平均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件.又如棣莫佛定理是对复数三角形式来说的.如数列中的前n 项和与无穷数列各项和S(S=)含义是不同的,等等.
3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.
如已知(1-2x)= a + a x+ a x +…+ a x ,那么①a + a + a +…+ a = ;②|a| +|a| +|a| +…+|a|= . 如(x +1)(x +1) (x +1) …(x +1) 的展开式所有项的系数之和为.
因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础.
二、上好课.同学们学习的主阵地是课堂,课堂的学习质量是影响学习成绩的关一环.
1.会听课.有的同学会说:“谁还不会听课?”其实不然.会听课就是要积极思考.当老师提出问题后,就要抢在老师前面思考怎么办?想一想解决这个问题的所有可能的途径和方法,然后在和教师讲的去比较,可能有的想法行有的不行,可能老师的方法更好,可能你的方法还简明、还奇妙.而不要等老师一点一点告诉你,自己仅仅是听懂了就认为学会了,这实际上是只得怀疑的.难怪不少同学说老师一讲就会,自己一做就错,原因是自己没有真正去思考,也就不可能变成自己的东西.所以积极思考是上好课最为重要的环节,当然也学习的主要方法.
2.做笔记.上课老师讲的含有重要概念,各种问题常规思想与方法,易错的问题,以及一些很适用的规律和技能等,所以,上课做好笔记是必要的.
3.要及时复习.根据记忆规律,复习应及时,每天一复习,一周一复习,每单一总结为好.
三.多做题.学数学离不开做题,高三学习更要做题,不做一定量习题是不可能学好数学的,但是要注意以下几个问题:
1.难度适当.现在复习资料多,题多,复习时应按老师的要求.且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失.因此,练习时应从自已的实际情况出发,循序渐进.应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质
2.题贵在精.在可能的情况下多练习一些是好的,但贵在精.首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”.其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程.第三对重点问题要舍得划费时间,多做一些题.第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-03-15
展开全部
能有什么方法,对某方面开了窍,那么就是高效,怎么听课都高效。每个人有每个人的方法,硬是要学习他人的方法只会让你现有的效率更低而已。你问这个问题是因为你对现状的不满,比如考试成绩总是不行。你应该试着去改变现状,用上一个月的时间发奋努力,然后取得一个至少让自己满意的成绩,有了基本的信心也会减少上课打瞌睡的次数,也能和老师打好关系,不要小看这种关系。 至于什么归纳总结,说实话做这个的人不多,能有多少时间呢,高中的课程安排的很满,出了作业就是上课,要说还有的话就是上厕所,你能自我安排的时间也很少,那些成绩好的同学的总结如睡前回顾一天,做好归纳总结等等都是假的。但是有一点,错题是真的,这个东西非常重要,即使在紧张也要尽量抽出时间做错题,比如下课时间做个一道两道的数学错题,能加深你对不熟悉题目的记忆,很多题目的关联度很大,也许你不会的题目都是在某一个知识点上,那么,完成错题就是巩固知识点的一个方法,也许就是这么一道错题,就让你把很多的原本不会做的题目解决。 总之,不要总想这别人怎么怎么样,看看那个好同学怎么不怎么认真就有好成绩,因为你没有他的专注能力和计划执行能力,人家说什么就能做到什么,注意力集中,不分神;看看那个同学怎么学的这么快,因为他有好的记忆力,这也没办法学到,同样的题目他做一遍就记住了,而你却记不住,那么就整理,再做一遍。你的方法跟随了你很多年,轻易的完全改变只会浪费的你的时间,你要改变的应该是你的效率,以及某些细节方面。 最后,希望你能在高三取得一个完美的尾声。 以上仅为我个人意见,如有不足,欢迎批评。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-03-15
展开全部
有人说,得数学者,得高考。确实如此,数学拉分的程度应该老师都有提,所以我不多说。数学的确好麻烦,想不到方法就做不成。但是掌握到高考所考的知识点。就已经完成了70%了。你对课本的知识点要有大概的印象,考试该出什么题你心中要有个底,比如三角(三角函数,解三角形),函数(导数,基本初级函数,函数的性质),数列,概率与统计,立体几何等等你心中要有数,或者说,你做题的时候,你对自己说,啊这题考什么,这题又考什么,这题我做起来有困难,我就番开课本,复习资料自己再练习,补充,查漏补缺~不懂的要问老师。所以我建议你买一个大的厚的笔记本,自己对课本的知识点重头到尾的过一遍,记一遍,一边写一边记,比如说三角函数里的公式你记住了吗?记的时候要总结一点方法,好了记完之后你会应用在题目上吗,你就找一点题目去做,不过如果自己复习的时候就尽量避开难题,做低~中等的题目就可以了,难题的话就需要问到老师就回到学校再说吧。但是这个过程好困难,关键就是要自己坚持,你要记住一句话,想要拿高分,就不要怕麻烦!不论是你复习还是做题的时候,也不要怕麻烦,你要知道,一道题目都是有几个好简单好基础的知识点堆砌起来来考你,你掌握好基础,再学会去应用,这大概没什么问题..所以上面我提到把知识点过一遍确实是一个不错的方法,把知识点过一遍后,就要不断去练习,不断地摸索。最重要的就是要靠自己思考,另外,一轮复习要做最好做一点难题,之后再以做中等以下的题目为主,难题是次要。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询