如图,OA⊥OB,OC为射线,OM平分∠AOC,ON平分∠BOC.
(1)∠BOC=30°,求∠MON的度数(2)当∠BOC的大小发生变化时,∠MON的大小发生变化吗?若不发生变化,求出∠MON是的度数;若发生变化,试说明理由。...
(1)∠BOC=30°,求∠MON的度数
(2)当∠BOC的大小发生变化时,∠MON的大小发生变化吗?若不发生变化,求出∠MON是的度数;若发生变化,试说明理由。 展开
(2)当∠BOC的大小发生变化时,∠MON的大小发生变化吗?若不发生变化,求出∠MON是的度数;若发生变化,试说明理由。 展开
1个回答
展开全部
1、解:
∵OA⊥OB
∴∠AOB=90
∴∠AOC=∠AOB+∠BOC=90+30=120
∵OM平分∠AOC
∴∠COM=∠AOC/2=120/2=60
∵ON平分∠BOC
∴∠CON=∠BOC/2=30/2=15
∴∠MON=∠COM-∠CON=60-15=45°
2、∠MON=45°,不变
证明:
∵OA⊥OB
∴∠AOB=90
∴∠AOC=∠AOB+∠BOC
∵OM平分∠AOC
∴∠COM=∠AOC/2=(∠AOB+∠BOC)/2
∵ON平分∠BOC
∴∠CON=∠BOC/2
∴∠MON=∠COM-∠CON=(∠AOB+∠BOC)/2-∠BOC/2=∠AOB/2=90/2=45°
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
∵OA⊥OB
∴∠AOB=90
∴∠AOC=∠AOB+∠BOC=90+30=120
∵OM平分∠AOC
∴∠COM=∠AOC/2=120/2=60
∵ON平分∠BOC
∴∠CON=∠BOC/2=30/2=15
∴∠MON=∠COM-∠CON=60-15=45°
2、∠MON=45°,不变
证明:
∵OA⊥OB
∴∠AOB=90
∴∠AOC=∠AOB+∠BOC
∵OM平分∠AOC
∴∠COM=∠AOC/2=(∠AOB+∠BOC)/2
∵ON平分∠BOC
∴∠CON=∠BOC/2
∴∠MON=∠COM-∠CON=(∠AOB+∠BOC)/2-∠BOC/2=∠AOB/2=90/2=45°
数学辅导团解答了你的提问,理解请及时采纳为最佳答案。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询