求二重积分∫∫(x^2-y^2)dxdy,D为0≤y≤sinx,0≤x≤π所围成的区域,需画图

 我来答
heanmeng
2013-01-23 · TA获得超过6749个赞
知道大有可为答主
回答量:3651
采纳率:94%
帮助的人:1513万
展开全部
解:∵∫<0,π>x²sinxdx=(-x²cosx+2xsinx+2cosx)│<0,π> (应用分部积分法)
=π²-2-2
=π²-4
∫<0,π>sin³xdx=∫<0,π>(1-cos²x)sinxdx
=∫<0,π>(cos²x-1)d(cosx)
=(cos³x/3-cosx)│<0,π>
=-1/3+1-1/3+1
=4/3
∴∫∫<D>(x²-y²)dxdy=∫<0,π>dx∫<0,sinx>(x²-y²)dy
=∫<0,π>(x²sinx-sin³x/3)dx
=∫<0,π>x²sinxdx-(1/3)∫<0,π>sin³xdx
=(π²-4)-(1/3)(4/3)
=π²-40/9。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式