求积分∫(lnx)^2dx
3个回答
展开全部
原式=x(lnx)²-∫xd(lnx)²
=x(lnx)²-∫x*2lnx*1/xdx
=x(lnx)²-2∫lnxdx
=x(lnx)²-2xlnx+2∫xdlnx
=x(lnx)²-2xlnx+2∫x*1/xdx
=x(lnx)²-2xlnx+2∫dx
=x(lnx)²-2xlnx+2x+C
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在。
扩展资料:
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。
参考资料来源:百度百科——不定积分
展开全部
原式=x(lnx)^2-∫2x/x*lnxdx=x(lnx)^2-2∫lnxdx=x(lnx)^2-2xlnx+2∫x/xdx=x(lnx)^2-2xlnx+2x+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式= xln²x-∫xdln²x
=xln²x-∫x*2lnx*1/xdx
=xln²x-2∫lnxdx
=xln²x-2xlnx+2∫xdlnx
=xln²x-2xlnx+2∫x*1/xdx
=xln²x-2xlnx+2∫dx
=xln²x-2xlnx+2x+C
=xln²x-∫x*2lnx*1/xdx
=xln²x-2∫lnxdx
=xln²x-2xlnx+2∫xdlnx
=xln²x-2xlnx+2∫x*1/xdx
=xln²x-2xlnx+2∫dx
=xln²x-2xlnx+2x+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询