已知直线l:x+y-6=0 和圆x^2+y^2-2x-2y-2=0,圆心为M,点A在直线l上,若圆 M与直线AC
M与直线AC至少有一个公共点C,且角MAC=30°,则点A的横坐标的取值范围是A,(5,0)B[1,5]C[1,3]D(0,3]...
M与直线AC至少有一个公共点C,且角MAC=30°,则点A的横坐标的取值范围是
A,(5,0) B[1,5] C[1,3] D(0,3] 展开
A,(5,0) B[1,5] C[1,3] D(0,3] 展开
3个回答
展开全部
因为圆 M与直线AC至少有一个公共点C,且角MAC=30°
则从A点引到圆上的切线与圆相切于一点C‘ ∠MAC'≥30°
圆方程可化为(x-1)^2+(y-1)^2=4 M(1,1) r=2
设A的坐标(x,6-x)
MC'=r=2 AM=√[(x-1)^2+(6-x-1)^2]=√(2x^2-12x+26)
sin∠MAC'=MC'/AM 1/2≤sin∠MAC'<1 1<AM≤4
联立方程得:1<2x^2-12x+26≤16 1<2(x-3)^2+8≤16
1≤x≤5 选B
则从A点引到圆上的切线与圆相切于一点C‘ ∠MAC'≥30°
圆方程可化为(x-1)^2+(y-1)^2=4 M(1,1) r=2
设A的坐标(x,6-x)
MC'=r=2 AM=√[(x-1)^2+(6-x-1)^2]=√(2x^2-12x+26)
sin∠MAC'=MC'/AM 1/2≤sin∠MAC'<1 1<AM≤4
联立方程得:1<2x^2-12x+26≤16 1<2(x-3)^2+8≤16
1≤x≤5 选B
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目是否有误?
M与直线AC至少有一个公共点C,且角MAC=30°,按照这个条件,点A只能是定点吧,如果是定点;则只有:B[1,5] 符合:点A在直线L:x+y-6=0 上,选择B
M与直线AC至少有一个公共点C,且角MAC=30°,按照这个条件,点A只能是定点吧,如果是定点;则只有:B[1,5] 符合:点A在直线L:x+y-6=0 上,选择B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询