已知函数f(x)=根号3sinxcosx-cos2x+1/2
3个回答
展开全部
f(x)=√3sinxcosx-cos2x+1/2=√3/2sin2x-cos2x+1/2
√[(√3/2)^2+1]=√7/2
令cosa=(√3/2)/(√7/2)=√(3/7)
sina=1/(√7/2)=2/√7
f(x)=(2/√7)sin(2x-a)+1/2
f(x)最小正周期T=2π/2=π
0<2/√7<1/2
0<a<π/6
π/6≤x<π/2
π/3≤2x<π
π/3-a≤2x-a<π-a
π/6<π/3-a<5π/6
2x-a=π/2
f(x)最大=2/√7+1/2
题目是否少了个1/2
f(x)=√3sinxcosx- (1/2) cos2x+1/2①
或f(x)=√3sinxcosx-(cos2x+1)/2②
f(x)=√3/2sin2x-1/2cos2x±1/2
=sin2xcosπ/6-cos2xsinπ/6±1/2
=sin(2x+π/6)±±1/2
f(x)最小正周期T=2π/2=π
π/6≤x<π/2
π/3≤2x<π
π/3-π/6≤2x-π/6<π-π/6
π/6≤π/3-a<5π/6
2x-π/6=π/2
①f(x)最大=1+1/2=3/2
②f(x)最大=1-1/2=1/2
√[(√3/2)^2+1]=√7/2
令cosa=(√3/2)/(√7/2)=√(3/7)
sina=1/(√7/2)=2/√7
f(x)=(2/√7)sin(2x-a)+1/2
f(x)最小正周期T=2π/2=π
0<2/√7<1/2
0<a<π/6
π/6≤x<π/2
π/3≤2x<π
π/3-a≤2x-a<π-a
π/6<π/3-a<5π/6
2x-a=π/2
f(x)最大=2/√7+1/2
题目是否少了个1/2
f(x)=√3sinxcosx- (1/2) cos2x+1/2①
或f(x)=√3sinxcosx-(cos2x+1)/2②
f(x)=√3/2sin2x-1/2cos2x±1/2
=sin2xcosπ/6-cos2xsinπ/6±1/2
=sin(2x+π/6)±±1/2
f(x)最小正周期T=2π/2=π
π/6≤x<π/2
π/3≤2x<π
π/3-π/6≤2x-π/6<π-π/6
π/6≤π/3-a<5π/6
2x-π/6=π/2
①f(x)最大=1+1/2=3/2
②f(x)最大=1-1/2=1/2
展开全部
解:依题意得:原式=f(x)=√3sinxcosx+cos2x+1=(√3/2)sin2x+cos2x+1=[(√7)/2][(√3/√7)sin2x+(2/√7)cos2x]+1=[(√7)/2]sin(2x+α)+1,
sinα=2/√7,cosα=√3/√7,α=arcsin(2/√7)所以有最小正周期为
T=派,单调递减区间应满足派/2+2k派≤2x+α≤3派/2+2k派,k∈Z解得
π/4-arcsin(2/√7)+k派≤x≤3派/4+arcsin(2/√7)+k派
sinα=2/√7,cosα=√3/√7,α=arcsin(2/√7)所以有最小正周期为
T=派,单调递减区间应满足派/2+2k派≤2x+α≤3派/2+2k派,k∈Z解得
π/4-arcsin(2/√7)+k派≤x≤3派/4+arcsin(2/√7)+k派
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
f(x)=(√3)sinxcosx+cos2x+1
f(x)=(√3)(2sinxcosx)/2+cos2x+1
f(x)=(√3/2)sin2x+cos2x+1
f(x)=(√7/2)[(√3/2)(2/√7)sin2x+(2/√7)cos2x]+1
f(x)=(√7/2)[(√3/√7)sin2x+(2/√7)cos2x]+1
令:√3/√7=cosα,则:2/√7=sinα,代入f(x),有:
f(x)=(√7/2)(cosαsin2x+sinαcos2x)+1
f(x)=(√7/2)sin(2x+α)+1
1、最小正周期:
2π/2=π
2、单调递减区间:
f(x)=(√7/2)sin(2x+α)+1
f'(x)=(√7)cos(2x+α)
令:f'(x)<0,即:(√7)cos(2x+α)<0,
整理,有:cos(2x+α)<0
解得:kπ+(π-2α)/4<x<kπ+(3π-2α)/4
f(x)的单调减区间是:x∈(kπ+(π-2α)/4,kπ+(3π-2α)/4),
其中:k=0、±1、±2、……;αarcsin(2/√7)=arcsin(2√7/7)。
f(x)=(√3)sinxcosx+cos2x+1
f(x)=(√3)(2sinxcosx)/2+cos2x+1
f(x)=(√3/2)sin2x+cos2x+1
f(x)=(√7/2)[(√3/2)(2/√7)sin2x+(2/√7)cos2x]+1
f(x)=(√7/2)[(√3/√7)sin2x+(2/√7)cos2x]+1
令:√3/√7=cosα,则:2/√7=sinα,代入f(x),有:
f(x)=(√7/2)(cosαsin2x+sinαcos2x)+1
f(x)=(√7/2)sin(2x+α)+1
1、最小正周期:
2π/2=π
2、单调递减区间:
f(x)=(√7/2)sin(2x+α)+1
f'(x)=(√7)cos(2x+α)
令:f'(x)<0,即:(√7)cos(2x+α)<0,
整理,有:cos(2x+α)<0
解得:kπ+(π-2α)/4<x<kπ+(3π-2α)/4
f(x)的单调减区间是:x∈(kπ+(π-2α)/4,kπ+(3π-2α)/4),
其中:k=0、±1、±2、……;αarcsin(2/√7)=arcsin(2√7/7)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询