已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)过点p(1,3/2),离心率e=1/2,
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)过点p(1,3/2),离心率e=1/2,右顶点为A,右焦点为F.(1)求椭圆E的标准方程;(2)若经过F的直线...
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)过点p(1,3/2),离心率e=1/2,右顶点为A,右焦点为F.(1)求椭圆E的标准方程;(2)若经过F的直线l(不与x轴重合)交椭圆E与B,C两点,延长BA,CA,分别交右准线于M,N两点。求证:FN
垂直于FM 展开
垂直于FM 展开
展开全部
(1)
过点P: 1/a² + 9/(4b²) = 1 (i)
e² = c²/a² = (a² - b²)/a² = 1 - b²/a² = 1/4
3a² = 4b² (ii)
联立(i)(ii): a² = 4, b² = 3, c² = 1
x²/4 + y²/3 = 1
(2)
A(2, 0), F(1, 0)
右准线: x = a²/c = 4/1 = 4
设直线l的斜率为k, 方程为 y = k(x - 1)
代入x²/4 + y²/3 = 1 并整理: (4k² + 3)x² - 8k²x + 4(k² - 3) = 0
x₁ + x₂= 8k²/(4k² + 3) (iii)
x₁x₂ = 4(k² - 3)/(4k² + 3) (iv)
B(x₁, k(x₁ - 1))
C(x₂, k(x₂ - 1))
AB的方程: (y - 0)/[k(x₁ - 1) - 0] = (x - 2)/(x₁ - 2)
取x = 4 (准线), M的纵坐标为y₁ = 2k(x₁ - 1)/(x₁ - 2)
类似可得N的纵坐标为y₂ = 2k(x₂ - 1)/(x₂ - 2)
FM的斜率k₁ = (y₁ - 0)/(4 - 1) = y₁/3
FN的斜率k₂ = (y₂ - 0)/(4 - 1) = y₂/3
k₁k₂ = (1/9)y₁y₂ = (4k²/9)(x₁ - 1)(x₂ - 1)/[(x₁ - 2)(x₂ - 2)]
= (4k²/9)[x₁x₂ - (x₁ + x₂) + 1]/[x₁x₂ - 2(x₁ + x₂) + 4]
代入(iii)(iv), 可得k₁k₂ = -1
FN垂直于FM
过点P: 1/a² + 9/(4b²) = 1 (i)
e² = c²/a² = (a² - b²)/a² = 1 - b²/a² = 1/4
3a² = 4b² (ii)
联立(i)(ii): a² = 4, b² = 3, c² = 1
x²/4 + y²/3 = 1
(2)
A(2, 0), F(1, 0)
右准线: x = a²/c = 4/1 = 4
设直线l的斜率为k, 方程为 y = k(x - 1)
代入x²/4 + y²/3 = 1 并整理: (4k² + 3)x² - 8k²x + 4(k² - 3) = 0
x₁ + x₂= 8k²/(4k² + 3) (iii)
x₁x₂ = 4(k² - 3)/(4k² + 3) (iv)
B(x₁, k(x₁ - 1))
C(x₂, k(x₂ - 1))
AB的方程: (y - 0)/[k(x₁ - 1) - 0] = (x - 2)/(x₁ - 2)
取x = 4 (准线), M的纵坐标为y₁ = 2k(x₁ - 1)/(x₁ - 2)
类似可得N的纵坐标为y₂ = 2k(x₂ - 1)/(x₂ - 2)
FM的斜率k₁ = (y₁ - 0)/(4 - 1) = y₁/3
FN的斜率k₂ = (y₂ - 0)/(4 - 1) = y₂/3
k₁k₂ = (1/9)y₁y₂ = (4k²/9)(x₁ - 1)(x₂ - 1)/[(x₁ - 2)(x₂ - 2)]
= (4k²/9)[x₁x₂ - (x₁ + x₂) + 1]/[x₁x₂ - 2(x₁ + x₂) + 4]
代入(iii)(iv), 可得k₁k₂ = -1
FN垂直于FM
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询