求微分方程(x^2+1)y'+2xy-cosx=0的通解

方法1全微分法(我想知道什么是全微分法?)原方程可化为[(x^2+1)*y]'=cosx(这步我不理解)求高人指点两边关于X积分,得(x^2+1)y=sinx+c所以原方... 方法1 全微分法 (我想知道什么是全微分法?)
原方程可化为[(x^2+1)*y]'=cosx (这步我不理解)求高人指点
两边关于X积分,得
(x^2+1)y=sinx+c
所以原方程的通解为:
y=(sinx+c)/(x^+1)
展开
 我来答
nsjiang1
2013-01-24 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3861万
展开全部
全微分法,如果dz=∂z/∂x dx+∂z/∂y dy=0,那么通解u(x,y)=C
(x^2+1)y'+2xy-cosx=0
(x^2+1)dy+(2xy-cosx)dx=0
或:
[(x^2+1)dy+(2xy)dx]-cosxdx=0

由于d(x^2+1)y=(x^2+1)dy+(2xy)dx

所以:d(x^2+1)y-dsinx=0
通解为:(x^2+1)y-sinx=C
帮你学习高中数学
2013-01-25 · TA获得超过3020个赞
知道大有可为答主
回答量:2080
采纳率:50%
帮助的人:1902万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式