七下数学的知识重点 每个单元的 具体 5
一、精心选一选,相信自己的判断力!( 每小题4分.共32分)
1. 下列各组长度的线段为边,能构成三角形的是( )
A、7 、5、12 B、6、8、15 C、8、4、3 D、4、6、5
Q
Q
2.如图,在一张透明的纸上画一条直线 ,在 外
任取一点Q并折出过点Q且与 垂直的直线。
这样的直线能折出( )
A、0条 B、1条 C、2条 D、3条
3.已知点M(3a-9,1-a)在x轴上,则a=( )
A.1 B.2 C.3 D.O
4.若 < ,则 一定满足( )
A、 >0 B、 <0 C、 ≥0 D、 ≤0
5.△ABC中,∠A= ∠B= ∠C,则△ABC是( )
­ A.锐角三角形­ B.直角三角形; C.钝角三角形­ D.都有可能
6.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )
(A)1种 (B)2种 (C)3种 (D)4种
7.用代入法解方程组 有以下步骤:
①:由⑴,得 ⑶ ②:把⑶代入⑴,得
③:整理得 3=3 ④:∴ 可取一切有理数,原方程组有无数个解
以上解法,造成错误的一步是( )
A、① B、② C、③ D、④
8.地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )
A、 B、 C、 D、
二、认真填一填,试试自己的身手!填空题(每小题4分,共32分)
9. 正n边形的内角和等于10800,则n= 。
10.如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,
则∠AEC = 度。
11. 已知三角形的三边之长分别为3,6,a,则a的取值范围是______________.
12.请写出一个在第一象限内且到两坐标轴的距离都相等的点的
坐标____________.
13.某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对______道题,成绩才能在60分以上
14.阅读下列语句:
①对顶角相等;②同位角相等;③画∠AOB的平分线OC;④这个角等于30°吗?在这些语句中,属于真命题的是_____ _____(填写序号)
15.已知关于 的二元一次方程 =7中, 的系数已经模糊不清,但已知 是这个方程的解,那么原方程是_________ _______。
16、某市为了了解该市6万名七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%.这次检测的样本容量是____ _______。
三、解答题(共86分)
­17、解方程组
18、(8分)解不等式组 ,并把不等式组的解集在数轴上表示出来。
19、(8分) x取哪些非负整数时, 的值大于 与1的差 。
20、(8分)已知关于x、y的方程组 的解都是正数求m的取值范围;
21、(10分)如图:已知AB∥DE∥CF,
若∠ABC=70°,∠CDE=130°,
求∠BCD的度数。
22、(10分)如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,⊿ABC的顶点在格点上。 且A(1,-4),B(5,-4),C(4,-1)
(1)画出⊿ABC;
X
y
0
1
-1
1
-1
(2)求出⊿ABC 的面积;
(3)若把⊿ABC向上平移2个单位长度,
再向左平移4个单位长度得到⊿ B C ,
在图中画出⊿ B C ,并写出B 的坐标。
23、(10分)北京举办2008年夏季奥运会以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形图中,将表示“一般了解”的部分补充完整.
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)如果全年级共1000名同学,请你估算全年级对奥运知识 “了解较多”的学生人数.
0
了解程度
C
B
人数
A
4
8
12
16
20
C 20%
B
A 50%
图1
图2
24、(12分)某汽车租赁公司要购买轿车和面包车共 辆.其中面包车不能超过轿车的两倍,轿车每辆 万元,面包车每辆 万元,公司可投入的购车款不超过61万元.
(1)符合公司要求的购买方案有哪几种?请说明理由.(8分)
(2)如果每辆轿车的日租金为 元,每辆面包车的日租金为 元.假设新购买的这 辆车每日都可租出,要使这 辆车的日租金收入不低于1600元,那么应选择以上哪种购买方案?(4分)
25(12分)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1) 在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数: 个;
(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数。
(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与
∠D、∠B之间存在着怎样的数量关系.说明理由。
(直接写出结果,不必证明)。
2.平行线的判定及其性质
3.命题与定理的区分
二、1.有序数对与平面直角坐标系
2.坐标的确定
三、1.三角形的三线:高、中线、角平分线
2.三角形的内角与外角
3.多边形内角和的推广
四、1.二元一次方程组及其解法
2.二元一次方程组的应用
3.选学:三元一次方程组(有较大实用价值,建议掌握)
五、1.不等式及其性质
2.一元一次不等式应用
3.一元一次不等式组
六、1.统计的调查方式及描述方法
2.直方图的绘制与数据分析
总体上就是这些,希望对您有帮助!
2013-01-24
但是我现在很忙
有时间了发给你