请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE
请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的...
请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.
展开
展开全部
(1)DE2=BD2+EC2;
(2)关系式DE2=BD2+EC2仍然成立.
证明:将△ADB沿直线AD对折,得△AFD,连FE
∴△AFD≌△ABD,
∴AF=AB,FD=DB,
∠FAD=∠BAD,∠AFD=∠ABD,
又∵AB=AC,
∴AF=AC,
∵∠FAE=∠FAD+∠DAE=∠FAD+45°,
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,
∴∠FAE=∠EAC,
又∵AE=AE,
∴△AFE≌△ACE,
∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°
∴∠DFE=∠AFD-∠AFE=135°-45°=90°,
∴在Rt△DFE中,DF2+FE2=DE2,
即DE2=BD2+EC2;
(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.
如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,
可得△CFE≌△CBE,△DCF≌△DCA.
∴AD=DF,EF=BE.
∴∠DFE=∠1+∠2=∠A+∠B=120°.
若使△DFE为等腰三角形,只需DF=EF,即AD=BE,
∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.
(2)关系式DE2=BD2+EC2仍然成立.
证明:将△ADB沿直线AD对折,得△AFD,连FE
∴△AFD≌△ABD,
∴AF=AB,FD=DB,
∠FAD=∠BAD,∠AFD=∠ABD,
又∵AB=AC,
∴AF=AC,
∵∠FAE=∠FAD+∠DAE=∠FAD+45°,
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,
∴∠FAE=∠EAC,
又∵AE=AE,
∴△AFE≌△ACE,
∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°
∴∠DFE=∠AFD-∠AFE=135°-45°=90°,
∴在Rt△DFE中,DF2+FE2=DE2,
即DE2=BD2+EC2;
(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.
如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,
可得△CFE≌△CBE,△DCF≌△DCA.
∴AD=DF,EF=BE.
∴∠DFE=∠1+∠2=∠A+∠B=120°.
若使△DFE为等腰三角形,只需DF=EF,即AD=BE,
∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)DE2=BD2+EC2;
(2)关系式DE2=BD2+EC2仍然成立.
证明:将△ADB沿直线AD对折,得△AFD,连FE
∴△AFD≌△ABD,
∴AF=AB,FD=DB,
∠FAD=∠BAD,∠AFD=∠ABD,
又∵AB=AC,
∴AF=AC,
∵∠FAE=∠FAD+∠DAE=∠FAD+45°,
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,
∴∠FAE=∠EAC,
又∵AE=AE,
∴△AFE≌△ACE,
∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°
∴∠DFE=∠AFD-∠AFE=135°-45°=90°,
∴在Rt△DFE中,DF2+FE2=DE2,
即DE2=BD2+EC2;
(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.
如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,
可得△CFE≌△CBE,△DCF≌△DCA.
∴AD=DF,EF=BE.
∴∠DFE=∠1+∠2=∠A+∠B=120°.
若使△DFE为等腰三角形,只需DF=EF,即AD=BE,
∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.
(2)关系式DE2=BD2+EC2仍然成立.
证明:将△ADB沿直线AD对折,得△AFD,连FE
∴△AFD≌△ABD,
∴AF=AB,FD=DB,
∠FAD=∠BAD,∠AFD=∠ABD,
又∵AB=AC,
∴AF=AC,
∵∠FAE=∠FAD+∠DAE=∠FAD+45°,
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,
∴∠FAE=∠EAC,
又∵AE=AE,
∴△AFE≌△ACE,
∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°
∴∠DFE=∠AFD-∠AFE=135°-45°=90°,
∴在Rt△DFE中,DF2+FE2=DE2,
即DE2=BD2+EC2;
(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.
如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,
可得△CFE≌△CBE,△DCF≌△DCA.
∴AD=DF,EF=BE.
∴∠DFE=∠1+∠2=∠A+∠B=120°.
若使△DFE为等腰三角形,只需DF=EF,即AD=BE,
∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询