要造一个圆柱形油罐,体积为V,问底半径r和高h各等于多少时,才能使表面积最小?这时底直径与高的比是
要造一个圆柱形油罐,体积为V,问底半径r和高h各等于多少时,才能使表面积最小?这时底直径与高的比是多少?...
要造一个圆柱形油罐,体积为V,问底半径r和高h各等于多少时,才能使表面积最小?这时底直径与高的比是多少?
展开
4个回答
引用凌月霜丶的回答:
v=πr²h
∴h=v/πr²
表面积s=2πr²+2πr×v/πr²=2πr²+2v/r
s'=4πr-2v/r²
令s‘=0 即4πr-2v/r²=0
解得r=³√〔v/(2π)〕
这时h=v/{³√〔v/(2π)〕}²=³√(4π²v)
即当r=³√〔v/(2π)〕,h=³√(4π²v)时圆柱表面积最小
v=πr²h
∴h=v/πr²
表面积s=2πr²+2πr×v/πr²=2πr²+2v/r
s'=4πr-2v/r²
令s‘=0 即4πr-2v/r²=0
解得r=³√〔v/(2π)〕
这时h=v/{³√〔v/(2π)〕}²=³√(4π²v)
即当r=³√〔v/(2π)〕,h=³√(4π²v)时圆柱表面积最小
展开全部
高错了,高等于2倍根号下v/2π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
v=πr²h
∴h=v/πr²
表面积s=2πr²+2πr×v/πr²=2πr²+2v/r
s'=4πr-2v/r²
令s‘=0 即4πr-2v/r²=0
解得r=³√〔v/(2π)〕
这时h=v/{³√〔v/(2π)〕}²=³√(4π²v)
即当r=³√〔v/(2π)〕,h=³√(4π²v)时圆柱表面积最小
∴h=v/πr²
表面积s=2πr²+2πr×v/πr²=2πr²+2v/r
s'=4πr-2v/r²
令s‘=0 即4πr-2v/r²=0
解得r=³√〔v/(2π)〕
这时h=v/{³√〔v/(2π)〕}²=³√(4π²v)
即当r=³√〔v/(2π)〕,h=³√(4π²v)时圆柱表面积最小
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询