用数学归纳法证明:1/n+1+1/n+2+1/n+3+...+1/3n>9/10

worldbl
2013-01-25 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3409万
展开全部
注:从而n+1到3n,左边共有2n项.
(1)当n=2时,左=1/3 +1/4+1/5+1/6=57/60>54/60=9/10,成立.
(2)假设n=k时,有1/(k+1) +1/(k+2) +...+1/3k >9/10
那么 1/(k+2)+1/(k+3) +...+1/3(k+1)
=[1/(k+1) +1/(k+2)+...+1/3k] +1/(3k+1) +1/(3k+2)+1/(3k+3) -1/(k+1)
>9/10 +1/(3k+3) +1/(3k+3)+1/(3k+3) -1/(k+1)
=9/10
即n=k+1时命题也成立,
从而 原不等式对n∈N,且n>1成立.
肖展8
2013-01-25 · TA获得超过3944个赞
知道大有可为答主
回答量:2083
采纳率:0%
帮助的人:805万
展开全部
你这个题不严密吧,要限定n>=2
当n=1,1/2+1/3=5/6<9/10,因此要对n做出限定。

下面用数学归纳法证明:

1)n=2,时,1/3+1/41/5+1/6=19/20>9/10
2)假设n=k时,1/k+1+1/k+2+1/k+3+...+1/3k-1>9/10-1/3k
那么当n=k+1时,
1/k+2+1/k+3+...+1/3k-1+1/3k+1/(3k+1)+1/(3k+2)>9/10+1/3k+1/(3k+1)+1/(3k+2)-1/k+1
那么只需要证明1/3k+1/(3k+1)+1/(3k+2)-1/k+1>-1/(3k+3)
即 1/3k+1/(3k+1)+1/(3k+2)>2/(3k+3)
上式显然成立,那么当n=k+1时,假设也成立
综合1),2)可知道不等式1/n+1+1/n+2+1/n+3+...+1/3n>9/10对于任意n>=2都成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
巨宸3Y
2013-01-25 · TA获得超过441个赞
知道小有建树答主
回答量:1184
采纳率:0%
帮助的人:796万
展开全部
上面的回答第一步应该是n=1讨论
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式