设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2Sn=an+1.(I)求a1,a2的值;(II)
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2Sn=an+1.(I)求a1,a2的值;(II)求数列{an}的通项公式;(III)令b1=1,b...
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2Sn=an+1.(I)求a1,a2的值;(II)求数列{an}的通项公式;(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求数列{bn}的前2n+1项和T2n+1.
展开
1个回答
展开全部
(I)当n=1时,2
=a1+1,
∴(
?1)2=0,a1=1
当n=2时,2
=a2+1,
∴
=2,a2=3.
(II)∵2
=an+1,
∴4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0
∵{an}是正数组成的数列,
∴an-an-1=2,∴an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)
=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n]
=1+(2n)2+
+
=
.
a1 |
∴(
a1 |
当n=2时,2
1+a2 |
∴
a2+1 |
(II)∵2
Sn |
∴4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0
∵{an}是正数组成的数列,
∴an-an-1=2,∴an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)
=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n]
=1+(2n)2+
3(1?3n) |
1?3 |
(?1)(1?(?1)n) |
1?(?1) |
=
3n+1?2+8n2+(?1)n |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询