如图1,矩形纸片ABCD中,AB=4,BC=43,将矩形纸片沿对角线AC向下翻折,点D落在点D′处,连接B D′,如图2
如图1,矩形纸片ABCD中,AB=4,BC=43,将矩形纸片沿对角线AC向下翻折,点D落在点D′处,连接BD′,如图2,求线段BD′的长....
如图1,矩形纸片ABCD中,AB=4,BC=43,将矩形纸片沿对角线AC向下翻折,点D落在点D′处,连接B D′,如图2,求线段BD′的长.
展开
展开全部
解:设AD′交BC于O,
方法一:
过点B作BE⊥AD′于E,
矩形ABCD中,
∵AD∥BC,AD=BC,
∠B=∠D=∠BAD=90°,
在Rt△ABC中,
∵tan∠BAC=
=
=
,
∴∠BAC=60°,∴∠DAC=90°-∠BAC=30°,(2分)
∵将△ACD沿对角线AC向下翻折,得到△ACD′,
∴AD′=AD=BC=4
,∠1=∠DAC=30°,
∴∠4=∠BAC-∠1=30°,
又在Rt△ABE中,∠AEB=90°,∴BE=2,(4分)
∴AE=
=2
,∴D′E=AD′-AE=2
,
∴AE=D′E,即BE垂直平分AD′,∴BD′=AB=4.(5分)
方法二:
矩形ABCD中,∵AD∥BC,AD=BC,∠B=∠D=90°,∴∠ACB=∠DAC,
在Rt△ABC中,∵tan∠BAC=
=
=
方法一:
过点B作BE⊥AD′于E,
矩形ABCD中,
∵AD∥BC,AD=BC,
∠B=∠D=∠BAD=90°,
在Rt△ABC中,
∵tan∠BAC=
BC |
AB |
4
| ||
4 |
3 |
∴∠BAC=60°,∴∠DAC=90°-∠BAC=30°,(2分)
∵将△ACD沿对角线AC向下翻折,得到△ACD′,
∴AD′=AD=BC=4
3 |
∴∠4=∠BAC-∠1=30°,
又在Rt△ABE中,∠AEB=90°,∴BE=2,(4分)
∴AE=
AB2?BE2 |
3 |
3 |
∴AE=D′E,即BE垂直平分AD′,∴BD′=AB=4.(5分)
方法二:
矩形ABCD中,∵AD∥BC,AD=BC,∠B=∠D=90°,∴∠ACB=∠DAC,
在Rt△ABC中,∵tan∠BAC=
BC |
AB |
4
| ||
4 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|