如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数

如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可求得x=______,第2008个格子中的数为___... 如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可求得x=______,第2008个格子中的数为______;(2)判断:前m个格子中所填整数之和是否可能为2008?若能,求出m的值;若不能,请说明理由;(这一问根据学生的实际情况可不处理)(3)如果a、b为前3格子中的任意两个数,那么所有的|a-b|的和可以通过计算|9-★|+|9-☆|+|★-☆|得到.若a、b为前19格子中的任意两个数,则所有的|a-b|的和为______. 展开
 我来答
布哟云0J
推荐于2017-09-03 · TA获得超过437个赞
知道答主
回答量:116
采纳率:0%
帮助的人:145万
展开全部
(1)∵任意三个相邻格子中所填整数之和都相等,
∴8+★+☆=★+☆+x,
解得x=8,
★+☆+x=☆+x-6,
∴★=-6,
所以,数据从左到右依次为9、-6、☆、9、-6、☆、…,
第9个数与第三个数相同,即☆=2,
所以,每3个数“9、-6、2”为一个循环组依次循环,
∵2008÷3=669…1,
∴第2006个格子中的整数与第1个格子中的数相同,为9.
故答案为:9,9.
(2)9-6+2=5,2008÷5=401…3,且9-6=3,故前m个格子中所填整数之和可能为2008;m的值为:401×3+2=1205.
(3)由于是三个数重复出现,那么前19个格子中,这三个数中,9出现了七次,-6和2都出现了6次.故代入式子可得:(|9+6|×6+|9-2|×6)×7+(|-6-2|×7+|2+6|×6)×6+(|-6-9|×7+|9+6|×7)×6=2808.
故答案为:2808.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式