(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点

(本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点C在x轴上,且,OB=OC.(1)求点B的坐标;(2)点P从... (本小题满分8分)如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点C在x轴上,且 ,OB=OC.(1)求点B的坐标;(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,联结EF.①判断EF与PM的位置关系;②当t为何值时, ? 展开
 我来答
燯纯
推荐于2016-06-03 · TA获得超过356个赞
知道答主
回答量:106
采纳率:100%
帮助的人:91.5万
展开全部
解:(1)如图1,过点B作BN⊥OC,垂足为N



,OB=OC
∴OA=8,OC="10     " -------------- -----------------1分
∴OB="OC=10," BN=OA=8
 
∴B (6,8)          -------------------------------------------- --2分
(2)如图1,∵∠BON=∠POH, ∠ONB=∠OHP=90°. 
∴△BON∽△POH   ∴
∵PC="5t.  " ∴OP="10-5t.   " ∴OH="6-3t." PH=8-4t.
∴BH="OB-OH=10-(6-3t)=3t+4   "
 ------------------------------------ 3分
∴t的取值范围是:0≤t<2       ------------------------------------------4分
(3)①EF⊥PM                          ----------------------------------------------------5分
∵MR⊥OC,PH⊥OB[来源:学科网]
∴∠RP M+∠RMP=90°,∠HPD+∠HDP=90° 
∵OC="OB     " ∴∠OCB=∠OBC.
∵BC∥PM
∴∠RPM=∠HDP,∴∠RMP=∠HPD,即:∠ EMP=∠HPM
∴EM=EP
∵点F为PM的中点   ∴EF⊥PM       ----------6分
②如图2过点B作BN′⊥OC,垂足为 N′,BN′=8,CN′=4
∵BC∥PM,MR⊥OC
∴△MRP≌△B N′C
∴PR="C" N′=4
设EM=x,则EP=x
在△PER中,∠ERP=90°,RE=MR-ME=8-x
,∴x=5
∴ME=5
∵△MGB∽△N′BO     

∵ PM∥CB,AB∥OC
∴四边形BMPC是平行四边形. ∴ BM=PC=5t.
第一种情况:当点G在点E上方时(如图2)
∵EG=2,∴MG=EM-EG=5-2=3
 ∴t=                                  --------------------7分
第二种情况:当点G在点E下方时(如图3) MG=ME+EG=5+2=7,
 ,∴t=          -------------------------------------------8分
∴当t= 时, .      

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式