各位大神帮帮忙, 20
1个回答
2015-02-09
展开全部
1.ab={5√3cosx,cosx}*{sinx,2cosx}
=5√3cosx*sinx + cosx*2cosx
=5√3sinxcosx+2cos^x
=(5√3/2)sin2x + 2cos^x
b^=sin^x + (2cosx)^
=sin^x + 4cos^x
=1 + 3cos^x
∴f(x)=ab+b^=(5√3/2)sin2x + 5cos^x +1
=(5√3/2)sin2x + 5(1+ cos2x)/2 +1
=(5√3/2)sin2x + (5/2)cos2x + 7/2
=5*[(√3/2)sin2x + (1/2)cos2x] + 7/2
=5[sin2x*cos(π/6)+cos2x*sin(π/6) + 7/2
=5sin(2x + π/6) +7/2
由此可以得出,f(x)的最小正周期为:2π/2 =π
2.x∈[π/16 , π/2]
<=>2x ∈[π/8 , π]
<=>2x+π/6 ∈[7π/24 , 7π/6]
令t=2x+π/6,则有:
f(x)=5sint + 7/2
且t∈[7π/24 , 7π/6]
分析基本正弦函数y=sint在此区间上的图像分布:
7π/24显然位于[0,π/2]区间,而7π/6显然位于[π,3π/2]区间,故
可将定义域t∈[7π/24,7π/6]分成几部分考虑:即[7π/24,π/2],[π/2,π],[π,7π/6]
当t∈[7π/24 , π/2]时,sint单调增,sint∈[sin(7π/24),sin(π/2)]=[sin(24π/7),1],其中0<sin(7π/24)<1;
当t∈[π/2,π]时,sint单调减,sint∈[sinπ,sin(π/2)]=[0,1];
当t∈[π,7π/6]时,sint单调减,sint∈[sin(7π/6),sinπ]=[-1/2,0]
综合上述三种情况可得:在[7π/24,7π/6]上,sint∈[-1/2 , 1]
(楼主要是熟悉图像的话,可根据图像做出结论,很容易判断!也可不换元,这主要看楼主对于这种题的熟悉程度!)
于是,f(t)=6sint+7/2 ∈[1,17/2],即值域为此
=5√3cosx*sinx + cosx*2cosx
=5√3sinxcosx+2cos^x
=(5√3/2)sin2x + 2cos^x
b^=sin^x + (2cosx)^
=sin^x + 4cos^x
=1 + 3cos^x
∴f(x)=ab+b^=(5√3/2)sin2x + 5cos^x +1
=(5√3/2)sin2x + 5(1+ cos2x)/2 +1
=(5√3/2)sin2x + (5/2)cos2x + 7/2
=5*[(√3/2)sin2x + (1/2)cos2x] + 7/2
=5[sin2x*cos(π/6)+cos2x*sin(π/6) + 7/2
=5sin(2x + π/6) +7/2
由此可以得出,f(x)的最小正周期为:2π/2 =π
2.x∈[π/16 , π/2]
<=>2x ∈[π/8 , π]
<=>2x+π/6 ∈[7π/24 , 7π/6]
令t=2x+π/6,则有:
f(x)=5sint + 7/2
且t∈[7π/24 , 7π/6]
分析基本正弦函数y=sint在此区间上的图像分布:
7π/24显然位于[0,π/2]区间,而7π/6显然位于[π,3π/2]区间,故
可将定义域t∈[7π/24,7π/6]分成几部分考虑:即[7π/24,π/2],[π/2,π],[π,7π/6]
当t∈[7π/24 , π/2]时,sint单调增,sint∈[sin(7π/24),sin(π/2)]=[sin(24π/7),1],其中0<sin(7π/24)<1;
当t∈[π/2,π]时,sint单调减,sint∈[sinπ,sin(π/2)]=[0,1];
当t∈[π,7π/6]时,sint单调减,sint∈[sin(7π/6),sinπ]=[-1/2,0]
综合上述三种情况可得:在[7π/24,7π/6]上,sint∈[-1/2 , 1]
(楼主要是熟悉图像的话,可根据图像做出结论,很容易判断!也可不换元,这主要看楼主对于这种题的熟悉程度!)
于是,f(t)=6sint+7/2 ∈[1,17/2],即值域为此
追问
第二问最后的答案是多少
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询