如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的

如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BD... 如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)连结BE,设DC=a,求BE的长. 展开
 我来答
琴MeiMei00106
推荐于2016-01-28 · 超过56用户采纳过TA的回答
知道答主
回答量:136
采纳率:0%
帮助的人:127万
展开全部
(1)∵在等腰Rt△ABC中,∠CAD=∠CBD=15 o
∴∠1=∠2=45°-15 o =30 o ,∴AD=BD,
又BC=AC, DC公共∴△BDC≌△ADC(SSS)
∴∠3=∠4=45 o
∴∠CDE=15 o +45 o =60°
又∠BDE=30 o +30 o =60°,∴DE平分∠BDC
(注:证△全等,必须先证AD=BD,也可以SAS,)
(2)∵CE=CA,∴等腰△ACE中∠ACE=150°,∴∠5=150°-90°=60°,
又CE=CA=BC,∴△BCE为正三角形,BE=AC
由等腰Rt△ABC性质,延长CD交AB于F,则△ADF为Rt△,设DF=x,
在Rt△ADF中,∠1=30 o ,则有 ,解得  (舍去负值),
∴BE=AC=

(1)先证得AD=BD,得△BDC≌△ADC,进而求出∠CDE=60°,易得∠BDE=60°,所以DE平分∠BDC;
(2)延长CD交AB于F,则△ADF为Rt△,利用勾股定理求解即可。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式