已知数列{an}中,a1=3,an+1=an+2.(1)求数列{an}的通项公式an;(2)若bn=an×3n,求数列{bn}的前n项
已知数列{an}中,a1=3,an+1=an+2.(1)求数列{an}的通项公式an;(2)若bn=an×3n,求数列{bn}的前n项和Sn....
已知数列{an}中,a1=3,an+1=an+2.(1)求数列{an}的通项公式an;(2)若bn=an×3n,求数列{bn}的前n项和Sn.
展开
展开全部
(1)∵数列{an}中,a1=3,an+1=an+2,即an+1-an=2.
∴数列{an}是等差数态拿列,
∴an=3+(n-1)×2=2n+1.
(2)由(1)可得bn=an×3n=(2n+1)?3n.
∴数列{bn}的前n项和Sn=3×3+5×32+…+(2n+1)?3n,
3Sn=3×32+5×33+…+(帆亏搭2n-1)?3n+(2n+1)?3n+1,
∴-2Sn=9+2×32+2×33+…+2×3n-(2n+1)?3n+1=3+
-(2n+1)?3n+1
=3n+1-(2n+1)?3n+1=-2n?3n+1.
∴Sn=n?3n+1.空悄
∴数列{an}是等差数态拿列,
∴an=3+(n-1)×2=2n+1.
(2)由(1)可得bn=an×3n=(2n+1)?3n.
∴数列{bn}的前n项和Sn=3×3+5×32+…+(2n+1)?3n,
3Sn=3×32+5×33+…+(帆亏搭2n-1)?3n+(2n+1)?3n+1,
∴-2Sn=9+2×32+2×33+…+2×3n-(2n+1)?3n+1=3+
2×3×(3n?1) |
3?1 |
=3n+1-(2n+1)?3n+1=-2n?3n+1.
∴Sn=n?3n+1.空悄
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询