阅读下列证明过程: 如图,A、B、C、D是⊙O上的四个点,顺次连接AB、BC、CD、DA,得到一个四边形ABCD (

阅读下列证明过程:如图,A、B、C、D是⊙O上的四个点,顺次连接AB、BC、CD、DA,得到一个四边形ABCD(此四边形称为⊙O的内接四边形),则∠A+∠C=∠B+∠D=... 阅读下列证明过程: 如图,A、B、C、D是⊙O上的四个点,顺次连接AB、BC、CD、DA,得到一个四边形ABCD (此四边形称为⊙O的内接四边形),则∠A +∠C=∠B+∠D =180°。证明:分别连接OB、OD,由圆周角定理,得 ∴ 同理可证∠B+∠D=180° 回答下列问题:
(1)请用数学语言概括上面得到的结论:______;(2)若延长BC到点E,则∠DCE是四边形ABCD的一个外角,∠BAD 是它的内对角,∠DCE与∠A的大小关系是____,请用数学语言概括并证明这个结论。
展开
 我来答
小鬼64858
推荐于2016-04-18 · TA获得超过144个赞
知道答主
回答量:116
采纳率:0%
帮助的人:108万
展开全部
解:(1)圆内接四边形的对角互补;
(2)相等
结论:圆内接四边形的一个外角等于它的内对角
证明:由上述结论可知,在四边形ABCD中,∠A+∠BCD=180°
又∵∠BCD+ ∠DCE =180°
∴∠A=∠DCE。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
心Sissy
2015-05-30 · TA获得超过6639个赞
知道小有建树答主
回答量:566
采纳率:100%
帮助的人:51.9万
展开全部
解:(1)圆内接四边形的对角互补;
(2)相等
结论:圆内接四边形的一个外角等于它的内对角
证明:由上述结论可知,在四边形ABCD中,∠A+∠BCD=180°
又∵∠BCD+ ∠DCE =180°
∴∠A=∠DCE。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式