已知如图,二次函数y=ax2+2ax-3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直
已知如图,二次函数y=ax2+2ax-3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:y=33x+3对称.(1)求A、B两点坐标,...
已知如图,二次函数y=ax2+2ax-3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:y=33x+3对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)设点s是三角形ABH上的一动点,从点A沿着AHB方向以每秒1个单位长度移动,运动时间为t秒,到达点B时停止运动.当t为何值时,以点s为圆心的圆与两坐标轴都相切.(4)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.
展开
1个回答
展开全部
(1)依题意,得ax2+2ax-3a=0(a≠0),
即x2+2x-3=0,
解得x1=-3,x2=1,
∵B点在A点右侧,
∴A点坐标为(-3,0),B点坐标为(1,0),
答:A、B两点坐标分别是(-3,0),(1,0).
∵直线l:y=
x+
,
当x=-3时,y=
×(-3)+
=0,
∴点A在直线l上.
(2)∵点H、B关于过A点的直线l:y=
x+
对称,
∴AH=AB=4,
如图1,过顶点H作HC⊥AB交AB于C点,
则AC=
AB=2,HC=2
,
∴顶点H(-1,2
即x2+2x-3=0,
解得x1=-3,x2=1,
∵B点在A点右侧,
∴A点坐标为(-3,0),B点坐标为(1,0),
答:A、B两点坐标分别是(-3,0),(1,0).
∵直线l:y=
| ||
3 |
3 |
当x=-3时,y=
| ||
3 |
3 |
∴点A在直线l上.
(2)∵点H、B关于过A点的直线l:y=
| ||
3 |
3 |
∴AH=AB=4,
如图1,过顶点H作HC⊥AB交AB于C点,
则AC=
1 |
2 |
3 |
∴顶点H(-1,2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|