如何对圆的一般方程配方?
5个回答
展开全部
概念形成与深化 请同学们写出圆的标准方程:(x – a)2 + (y – b)2 = r2,圆心(a,b),半径r.
把圆的标准方程展开,并整理:
x2 + y2 –2ax – 2by + a2 + b2 –r2=0.
取D = –2a,E = –2b,F = a2 + b2 – r2得x2 + y2 + Dx + Ey+F = 0①
这个方程是圆的方程.
反过来给出一个形如x2 + y2 + Dx + Ey + F = 0的方程,它表示的曲线一定是圆吗?
把x2 + y2 + Dx + Ey + F = 0配方得
②(配方过程由学生去完成)这个方程是不是表示圆?
(1)当D2 + E2 – 4F>0时,方程②表示以 为圆心,
为半径的圆;
(2)当D2 + E2 – 4F = 0时,方程只有实数解 ,即只表示一个点 ;
(3)当D2 + E2 – 4F<0时,方程没有实数解,因而它不表示任何图形.
综上所述,方程x2 + y2 + Dx + Ey + F = 0表示的曲线不一定是圆.
只有当D2 + E2 – 4F>0时,它表示的曲线才是圆,我们把形如x2 + y2 + Dx + Ey + F = 0的表示圆的方程称为圆的一般方程. 整个探索过程由学生完成,教师只做引导,得出圆的一般方程后再启发学生归纳.
圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0.
②没有xy这样的二次项.
(2)圆的一般方程中有三个特定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.
(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显. 通过学生对圆的一般方程的探究,使学生亲身体会圆的一般方程的特点,及二元二次方程表示圆所满足的条件.
把圆的标准方程展开,并整理:
x2 + y2 –2ax – 2by + a2 + b2 –r2=0.
取D = –2a,E = –2b,F = a2 + b2 – r2得x2 + y2 + Dx + Ey+F = 0①
这个方程是圆的方程.
反过来给出一个形如x2 + y2 + Dx + Ey + F = 0的方程,它表示的曲线一定是圆吗?
把x2 + y2 + Dx + Ey + F = 0配方得
②(配方过程由学生去完成)这个方程是不是表示圆?
(1)当D2 + E2 – 4F>0时,方程②表示以 为圆心,
为半径的圆;
(2)当D2 + E2 – 4F = 0时,方程只有实数解 ,即只表示一个点 ;
(3)当D2 + E2 – 4F<0时,方程没有实数解,因而它不表示任何图形.
综上所述,方程x2 + y2 + Dx + Ey + F = 0表示的曲线不一定是圆.
只有当D2 + E2 – 4F>0时,它表示的曲线才是圆,我们把形如x2 + y2 + Dx + Ey + F = 0的表示圆的方程称为圆的一般方程. 整个探索过程由学生完成,教师只做引导,得出圆的一般方程后再启发学生归纳.
圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0.
②没有xy这样的二次项.
(2)圆的一般方程中有三个特定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.
(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显. 通过学生对圆的一般方程的探究,使学生亲身体会圆的一般方程的特点,及二元二次方程表示圆所满足的条件.
展开全部
解:
圆的标准方程是:(x-a)²+(y-b)²=r²
(a,b)是圆心,r是半径
这样配方:例如:x²+2x+2+y²-4y+4=17
(x²+2x+1)+(y²-4y+4)=17-1
(x+1)²-(y-2)²=16
圆心是(-1,2),半径是4
圆的标准方程是:(x-a)²+(y-b)²=r²
(a,b)是圆心,r是半径
这样配方:例如:x²+2x+2+y²-4y+4=17
(x²+2x+1)+(y²-4y+4)=17-1
(x+1)²-(y-2)²=16
圆心是(-1,2),半径是4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-21
展开全部
加一次项系数一半的平方再减去原来加的数组成完全平方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-21
展开全部
陪完全平方
追问
知道,就是不会配啊!有公式不?
追答
负的一次项系数除以两倍二次项系数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |