已知 θ为锐角,sin( θ+15°)=4/5,则cos(2θ-15°)=?
1个回答
展开全部
因为θ为锐角,所以θ+15°<105,再由sin(θ+15°)=4/5<sin60°可知θ<45°(θ+15°≯120°);
∴cos(2θ+30°)=1-2sin²( θ+15°)=1-2*(4/5)²=-7/25,sin(2θ+30°)=√[1-cos²(2θ+30°)]=24/5;
cos(2θ-15°)=cos(2θ+30°-45°)=cos(2θ+30°)cos45°+sin(2θ+30°)sin45°=[-7/25+24/25]*√2/2=17√2/50;
∴cos(2θ+30°)=1-2sin²( θ+15°)=1-2*(4/5)²=-7/25,sin(2θ+30°)=√[1-cos²(2θ+30°)]=24/5;
cos(2θ-15°)=cos(2θ+30°-45°)=cos(2θ+30°)cos45°+sin(2θ+30°)sin45°=[-7/25+24/25]*√2/2=17√2/50;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询