如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G. (1)求证
如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条...
如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G. (1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.
展开
1个回答
展开全部
(1)证明:∵四边形ABCD为平行四边形,
∴AB ∥ CD,AD ∥ BC,AD=BC.
∴∠AGD=∠CDG,∠DCF=∠BFC.
∵DG、CF分别平分∠ADC和∠BCD,
∴∠CDG=∠ADG,∠DCF=∠BCF.
∴∠ADG=∠AGD,∠BFC=∠BCF
∴AD=AG,BF=BC.
∴AF=BG;
(2)∵AD ∥ BC,
∴∠ADC+∠BCD=180°,
∵DG、CF分别平分∠ADC和∠BCD,
∴∠EDC+∠ECD=90°.
∴∠DEC=90°.
∴∠FEG=90°.
因此我们只要保证添加的条件使得EF=EG就可以了.
我们可以添加∠GFE=∠FGD,
四边形ABCD为矩形,DG=CF等等.
∴AB ∥ CD,AD ∥ BC,AD=BC.
∴∠AGD=∠CDG,∠DCF=∠BFC.
∵DG、CF分别平分∠ADC和∠BCD,
∴∠CDG=∠ADG,∠DCF=∠BCF.
∴∠ADG=∠AGD,∠BFC=∠BCF
∴AD=AG,BF=BC.
∴AF=BG;
(2)∵AD ∥ BC,
∴∠ADC+∠BCD=180°,
∵DG、CF分别平分∠ADC和∠BCD,
∴∠EDC+∠ECD=90°.
∴∠DEC=90°.
∴∠FEG=90°.
因此我们只要保证添加的条件使得EF=EG就可以了.
我们可以添加∠GFE=∠FGD,
四边形ABCD为矩形,DG=CF等等.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询