如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N
如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).小明的思路是...
如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).小明的思路是:在图1中,连结BD,取BD的中点H,连结HE,HF,根据三角形中位线定理和平行线性质,可证得∠BME=∠CNE.问题:如图2,在△ABC中,AC>AB,D点在AC上,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=60°,连结GD,判断△AGD的形状并证明.
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询