(2011?兰州)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为(

(2011?兰州)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6B.13C.13D.213... (2011?兰州)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为(  )A.6B.13C.13D.213 展开
 我来答
载爽2l
推荐于2016-05-12 · 超过74用户采纳过TA的回答
知道答主
回答量:131
采纳率:80%
帮助的人:65.7万
展开全部
解:过点A作等腰直角三角形BC边上的高AD,垂足为D,
所以点D也为BC的中点.
根据垂径定理可知OD垂直于BC.所以点A、O、D共线.
∵⊙O过B、C,
∴O在BC的垂直平分线上,
∵AB=AC,圆心O在等腰Rt△ABC的内部,
∴AD⊥BC,BD=DC=3,AO平分∠BAC,
∵∠BAC=90°,
∴∠ADB=90°,∠BAD=45°,
∴∠BAD=∠ABD=45°,
∴AD=BD=3,
∴OD=3-1=2,
由勾股定理得:OB=
DO2+BD2
=
13

故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式