初二数学因式分解求解。
1个回答
展开全部
第一问:将xy看成一个整体,则原式 = (xy - 1)^ 2
第二问:将x+y看成一个整体,则原式 = ((x + y) + 3)^ 2
第三问:首先提取出来-y,则原式 = -y * (y ^ 2 - 4xy + 4x ^ 2)= -y(y - 2x)^ 2
第四问:首先进行通分,则原式 = [4xy -(x + y)^ 2] / (x ^ 2 - y ^ 2)
= - (x - y)^ 2 / (x - y) / (x + y)
= - (x - y)/ (x + y)
= 0.5
第二问:将x+y看成一个整体,则原式 = ((x + y) + 3)^ 2
第三问:首先提取出来-y,则原式 = -y * (y ^ 2 - 4xy + 4x ^ 2)= -y(y - 2x)^ 2
第四问:首先进行通分,则原式 = [4xy -(x + y)^ 2] / (x ^ 2 - y ^ 2)
= - (x - y)^ 2 / (x - y) / (x + y)
= - (x - y)/ (x + y)
= 0.5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询