判断级数敛散性∑1/n√(n+1)
2个回答
展开全部
利用恒等式:1 = (n+1) - n = (√(n+1) + √n)(√(n+1) - √n);
级数的通项可以写成1/(√(n+1) + √n)n^p;
而当n->无穷时,这与1/n^{p+1/2}是同阶的;
这又是正项级数;
所以收敛性与∑1/n^{p+1/2}相同(比较判别法)
又∵∑1/n^{p+1/2}收敛当且仅当p+1/2 > 1;
即p>1/2∴p>1/2时级数收敛,否则发散。
扩展资料:
如果级数的每一项依赖于变量x,x 在某区间I内变化,即un=un(x),x∈I,则∑un(x)称为函数项级数,简称函数级数。若x=x0使数项级数∑un(x0)收敛,就称x0为收敛点。
由收敛点组成的集合称为收敛域,若对每一x∈I,级数∑un(x)都收敛,就称I为收敛区间。显然,函数级数在其收敛域内定义了一个函数,Sm(x)在收敛域内一致收敛于S(x) 。
参考资料来源:百度百科-级数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询