latex分段函数对齐问题求助
代码是:\begin{equation}le{v_{a,b}}\left({i,j}\right)=\begin{cases}\max({i,j})&{\min({i,j...
代码是:
\begin{equation}
le{v_{a,b}}\left({i,j} \right)=
\begin{cases}
\max ({i,j}) &{\min({i,j})=0}\\
\min
\begin{cases}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1} &{else}\\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}\\
\end{cases}
\end{cases}
\end{equation}
请问如何将右边的min和else对齐? 谢谢 展开
\begin{equation}
le{v_{a,b}}\left({i,j} \right)=
\begin{cases}
\max ({i,j}) &{\min({i,j})=0}\\
\min
\begin{cases}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1} &{else}\\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}\\
\end{cases}
\end{cases}
\end{equation}
请问如何将右边的min和else对齐? 谢谢 展开
3个回答
展开全部
\begin{equation}
le{v_{a,b}}\left({i,j} \right)=
\begin{cases}{cc}
\max ({i,j}) &{\min({i,j})=0}\\
\min
\begin{cases}{ll}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1} \\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}
\end{cases}&{else}
\end{cases}
\end{equation}
le{v_{a,b}}\left({i,j} \right)=
\begin{cases}{cc}
\max ({i,j}) &{\min({i,j})=0}\\
\min
\begin{cases}{ll}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1} \\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}
\end{cases}&{else}
\end{cases}
\end{equation}
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
代码太混乱且不合理,懒得改写了,你要对齐很简单,加了一句比较粗暴的语句即可实现,虽然很ugly,倒也可以应付你的文档了
\begin{equation}
le{v_{a,b}}\left({i,j} \right)=
\begin{cases}
\max ({i,j}) &{\hspace{-1.1cm}\min({i,j})=0}\\
\min
\begin{cases}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1} &{else}\\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}\\
\end{cases}
\end{cases}
\end{equation}
\begin{equation}
le{v_{a,b}}\left({i,j} \right)=
\begin{cases}
\max ({i,j}) &{\hspace{-1.1cm}\min({i,j})=0}\\
\min
\begin{cases}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1} &{else}\\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}\\
\end{cases}
\end{cases}
\end{equation}
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
\begin{displaymath}
le{v_{a,b}}\left({i,j} \right)=
\left\{ \begin{array}{ll}
\max({i,j})&\textrm{min({i,j})=0}\\
\min({i,j})
\left\{\begin{array}{ll}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1}\\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}
\end{array} \right.
&\textrm{else}
\end{array} \right.
\end{displaymath}
le{v_{a,b}}\left({i,j} \right)=
\left\{ \begin{array}{ll}
\max({i,j})&\textrm{min({i,j})=0}\\
\min({i,j})
\left\{\begin{array}{ll}
{le{v_{a,b}}\left( {i - 1,j} \right) + 1}\\
{le{v_{a,b}}\left( {i,j-1} \right) + 1}\\
{le{v_{a,b}}\left( {i - 1,j - 1} \right) + \left[ {{a_i} \ne {b_j}} \right]}
\end{array} \right.
&\textrm{else}
\end{array} \right.
\end{displaymath}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询