已知椭圆C:y²/a²+x²/b²=1(a>b>0)经过点A(-1/2,√3),且离心率为√3/2
已知椭圆C:y²/a²+x²/b²=1(a>b>0)经过点A(-1/2,√3),且离心率为√3/2(1)求椭圆C的标准方程(2)设...
已知椭圆C:y²/a²+x²/b²=1(a>b>0)经过点A(-1/2,√3),且离心率为√3/2
(1)求椭圆C的标准方程
(2)设E、F分别是椭圆C上的两点,线段EF的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围 展开
(1)求椭圆C的标准方程
(2)设E、F分别是椭圆C上的两点,线段EF的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围 展开
1个回答
展开全部
(1)∵椭圆过A(-1/2,√3) ∴3/a²+1/(4b²)=1① ∵e=c/a=√3/2 ∴(a²-b²)/a²=3/4 ∴a²=4b² ②
联立①②,得a²=4,b²=1 ∴方程为y²/4+x²=1
(2)设E(m,n),F(p,q),EF中点Q(x,y)
∵EF垂直平分线与x轴相交 ∴m≠p 由题可知|PE|=|PF| ∴√((m-t)²+n²)=√((p-t)²+q²)
化简得t=(q²-n²)/(2(p-m))+(m+p)/2
∵E、F在椭圆C上 ∴n²=4-4m², q²=4-4p² ∴t=-3(m+p)/2=-3x
∵-1<x<1 ∴-3<t<3 即t的取值范围为(-3,3)
联立①②,得a²=4,b²=1 ∴方程为y²/4+x²=1
(2)设E(m,n),F(p,q),EF中点Q(x,y)
∵EF垂直平分线与x轴相交 ∴m≠p 由题可知|PE|=|PF| ∴√((m-t)²+n²)=√((p-t)²+q²)
化简得t=(q²-n²)/(2(p-m))+(m+p)/2
∵E、F在椭圆C上 ∴n²=4-4m², q²=4-4p² ∴t=-3(m+p)/2=-3x
∵-1<x<1 ∴-3<t<3 即t的取值范围为(-3,3)
更多追问追答
追问
为什么n²=4-4m², q²=4-4p² ?
追答
把E(m,n)、F(p,q)的坐标代入椭圆方程y²/4+x²=1就行了。
第一问的方程你可能没看清吧。x²+y²/4=1,这样比较明白。。呵呵。。这是一个竖着的椭圆,焦点在y轴上,所以写标准方程的时候y项在前面。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询